A263809 Decimal expansion of C_{1/2}, a constant related to Kolmogorov's inequalities.
2, 7, 8, 6, 4, 0, 7, 8, 5, 9, 3, 7, 1, 3, 5, 3, 7, 1, 8, 3, 6, 8, 4, 9, 2, 5, 2, 0, 6, 5, 0, 7, 3, 6, 4, 8, 5, 3, 1, 4, 9, 6, 2, 4, 3, 5, 0, 3, 1, 2, 3, 5, 7, 5, 7, 9, 4, 8, 5, 6, 3, 2, 6, 3, 7, 6, 0, 6, 4, 8, 0, 2, 5, 1, 5, 0, 0, 7, 3, 2, 6, 1, 3, 5, 7, 2, 9, 4, 6, 5, 9, 7, 1, 5, 6, 1, 9, 1, 1, 1, 9, 9, 3, 1, 3
Offset: 1
Examples
2.78640785937135371836849252065073648531496243503123575794856326376...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 7.7 Riesz-Kolmogorov Constants, p. 474.
Links
- Burgess Davis, On Kolmogorov's Inequalities, Transactions of the American Mathematical Society Vol. 222 (Sep., 1976), pp. 179-192.
Programs
-
Mathematica
RealDigits[Gamma[1/4]^2/(Pi*Gamma[3/4]^2), 10, 105] // First
-
PARI
gamma(1/4)^2/(Pi*gamma(3/4)^2) \\ Michel Marcus, Oct 27 2015
Formula
C_{1/2} = gamma(1/4)^2/(Pi*gamma(3/4)^2).
Equals (1/Pi^2)*(integral_{0..Pi} sqrt(csc(t)) dt)^2.
Also equals (8/Pi^2)*A093341^2.