A263827 The number c_{Cc pi_1(B_1)}(2n) of the second amphicosm 2n-coverings over the first amphicosm.
2, 6, 10, 14, 14, 30, 18, 30, 36, 42, 26, 70, 30, 54, 70, 62, 38, 108, 42, 98, 90, 78, 50, 150, 76, 90, 116, 126, 62, 210, 66, 126, 130, 114, 126, 252, 78, 126, 150, 210, 86, 270, 90, 182, 252, 150, 98, 310, 132, 228, 190, 210, 110, 348, 182, 270, 210, 186, 122, 490, 126, 198, 324, 254, 210, 390, 138, 266, 250, 378
Offset: 1
Keywords
Links
- Gheorghe Coserea, Table of n, a(n) for n = 1..20000
- G. Chelnokov, M. Deryagina, A. Mednykh, On the Coverings of Amphicosms; Revised title: On the coverings of Euclidian manifolds B_1 and B_2, arXiv preprint arXiv:1502.01528 [math.AT], 2015.
Programs
-
Maple
A263827 := proc(n) local locn,a,twol,fourl ; locn := 2*n ; # Theorem 3 (iii) a := 0 ; for twol in numtheory[divisors](locn) do if type(twol,'even') then a := a+numtheory[sigma](locn/twol) ; end if; end do: for fourl in numtheory[divisors](locn) do if modp(fourl,4) = 0 then a := a-numtheory[sigma](locn/fourl) ; end if; end do: %*2 ; end proc: # R. J. Mathar, Nov 03 2015
-
Mathematica
a[n_] := 2*Sum[If[Mod[d,4] == 2, DivisorSigma[1, 2*n/d], 0], {d, Divisors[ 2*n ] } ]; Array[a, 70] (* Jean-François Alcover, Dec 03 2017 *)
-
PARI
A007429(n) = sumdiv(n, d, sigma(d)); a(n) = 2*A007429(n) - if(n%2, 0, 2*A007429(n\2)); vector(70, n, a(n)) \\ Gheorghe Coserea, May 04 2016