A263829 Total number c_{pi_1(B_2)}(n) of n-coverings over the second amphicosm.
1, 3, 5, 13, 7, 19, 9, 43, 18, 33, 13, 93, 15, 51, 35, 137, 19, 110, 21, 175, 45, 99, 25, 355, 38, 129, 58, 285, 31, 289, 33, 455, 65, 201, 63, 626, 39, 243, 75, 721, 43, 483, 45, 589, 126, 339, 49, 1305, 66, 498, 95, 783, 55, 750, 91, 1227
Offset: 1
Keywords
Links
- Gheorghe Coserea, Table of n, a(n) for n = 1..20000
- G. Chelnokov, M. Deryagina, A. Mednykh, On the Coverings of Amphicosms; Revised title: On the coverings of Euclidian manifolds B_1 and B_2, arXiv preprint arXiv:1502.01528 [math.AT], 2015.
Programs
-
PARI
A001001(n) = sumdiv(n, d, sigma(d) * d); A007429(n) = sumdiv(n, d, sigma(d)); A007434(n) = sumdiv(n, d, moebius(n\d) * d^2); A059376(n) = sumdiv(n, d, moebius(n\d) * d^3); A060640(n) = sumdiv(n, d, sigma(n\d) * d); EpiPcZn(n) = sumdiv(n, d, moebius(n\d) * d^2 * gcd(d,2)); S1(n) = if (n%2, 0, A001001(n\2)); S11(n) = A060640(n) - if(n%2, 0, A060640(n\2)); S21(n) = if (n%2, 0, 2*A060640(n\2)) - if (n%4, 0, 2*A060640(n\4)); S22(n) = { if (n%2, A060640(n), if (n%4, 0, sumdiv(n\4, d, 2*d*(sigma(n\(2*d)) - sigma(n\(4*d)))))); }; A027844(n) = S1(n) + S11(n) + S21(n); a(n) = { 1/n * sumdiv(n, d, A059376(d) * S1(n\d) + EpiPcZn(d) * S21(n\d) + A007434(d) * S22(n\d)); }; vector(56, n, a(n)) \\ Gheorghe Coserea, May 04 2016
Extensions
More terms from Gheorghe Coserea, May 04 2016