cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263841 Expansion of (1 - 2*x - x^2)/(sqrt(1+x)*(1-3*x)^(3/2)*2*x) - 1/(2*x).

Original entry on oeis.org

1, 3, 9, 28, 87, 271, 843, 2619, 8123, 25153, 77763, 240054, 740017, 2278329, 7006093, 21520872, 66039651, 202462113, 620164491, 1898109900, 5805127269, 17741909157, 54188530641, 165405964227, 504601360389, 1538559689751, 4688812503053, 14282580916834, 43486805133903
Offset: 0

Views

Author

N. J. A. Sloane, Nov 02 2015

Keywords

Crossrefs

Programs

  • Maple
    A263841 := n -> add((k+1)*binomial(n, k)*binomial(n-k, iquo(n-k,2)), k = 0 .. n):
    seq(A263841(n), n = 0 .. 28); # Mélika Tebni, Jan 25 2024
  • Mathematica
    CoefficientList[Series[(1-2x-x^2)/(Sqrt[1+x] (1-3x)^(3/2) 2x)-1/(2x),{x,0,30}],x] (* Harvey P. Dale, Aug 21 2017 *)
  • PARI
    my(x='x+O('x^40)); Vec((1-2*x-x^2)/(sqrt(1+x)*(1-3*x)^(3/2)*2*x)-1/(2*x)) \\ Altug Alkan, Nov 10 2015

Formula

D-finite with recurrence: -(n+1)*(n^2+n-3)*a(n) + 2*(n^3+3*n^2-4*n-3)*a(n-1) + 3*(n-1)*(n^2+3*n-1)*a(n-2) = 0. - R. J. Mathar, Feb 17 2016
From Mélika Tebni, Jan 24 2024: (Start)
a(n) = A005773(n+1) + A132894(n).
E.g.f.: (1+x)*exp(x)*(BesselI(0,2*x) + BesselI(1,2*x)). (End)
From Mélika Tebni, Jan 25 2024: (Start)
a(n) = Sum_{k=0..n} A189911(k)*binomial(n,k).
a(n) = Sum_{k=0..n} (k+1)*binomial(n,k)*binomial(n-k,floor((n-k)/2)). (End)