A263850 Let R = Z[(1+sqrt(5))/2] denote the ring of integers in the real quadratic number field of discriminant 5. Then a(n) is the largest integer k such that every totally positive element of norm n in R can be written as a sum of three squares in R in at least k ways, or 0 if there is no totally positive element of norm n.
1, 6, 0, 0, 12, 24, 0, 0, 0, 32, 0, 24, 0, 0, 0, 0, 54, 0, 0, 24, 24, 0, 0, 0, 0, 30, 0, 0, 0, 24, 0, 48, 0, 0, 0, 0, 48, 0, 0, 0, 0, 96, 0, 0, 24, 48, 0, 0, 0, 96, 0, 0, 0, 0, 0, 48, 0, 0, 0, 24, 0, 120, 0, 0, 108, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 0, 72, 0, 0, 48, 120, 54, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0
Offset: 0
Keywords
References
- Maass, Hans. Über die Darstellung total positiver Zahlen des Körpers R (sqrt(5)) als Summe von drei Quadraten, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. Vol. 14. No. 1, pp. 185-191, 1941.
Links
- Robin Visser, Table of n, a(n) for n = 0..10000
- Harvey Cohn, A computation of some bi-quadratic class numbers, Math. Tables Aids Comput. 12 (1958), 213-217. See pages 215-217.
Crossrefs
Programs
-
Sage
import itertools def a(n): if n==0: return 1 if any([((r[0]%5 in [2,3]) and (r[1]%2==1)) for r in factor(n)]): return 0 K.
= NumberField(x^2-x-1); cw = w.coordinates_in_terms_of_powers(); ans = [] for idl in K.ideals_of_bdd_norm(n)[n]: for u in [1,-1,w,-w]: X,Y = cw(u*idl.gens_reduced()[0]); num = 0 if (X < 0): continue for b in range(-isqrt(X), isqrt(X)+1): for d in range(-isqrt(X-b^2), isqrt(X-b^2)+1): for f in range(-isqrt(X-b^2-d^2), isqrt(X-b^2-d^2)+1): S = b^2+d^2+f^2; M = isqrt(X-S); for (a,c,e) in itertools.product(range(-M, M+1), repeat=3): if (a^2+c^2+e^2+S==X) and (2*(a*b+c*d+e*f)+S==Y): num += 1 if (num > 0): ans.append(num) return min(ans) # Robin Visser, Mar 28 2025
Comments