cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263885 Number of permutations of [n] containing exactly one occurrence of the consecutive pattern 132.

Original entry on oeis.org

1, 8, 54, 368, 2649, 20544, 172596, 1569408, 15398829, 162412416, 1834081890, 22093090560, 282889238253, 3837991053312, 55010010678120, 830731742908416, 13185328329110745, 219457733809563648, 3822426663111579150, 69538569862816419840, 1318999546575572747265
Offset: 3

Views

Author

Alois P. Heinz, Oct 28 2015

Keywords

Examples

			a(3) = 1: 132.
a(4) = 8: 1243, 1324, 1423, 1432, 2143, 2431, 3142, 4132.
a(5) = 54: 12354, 12435, 12534, ..., 52431, 53142, 54132.
a(6) = 368: 123465, 123546, 123645, ..., 652431, 653142, 654132.
a(7) = 2649: 1234576, 1234657, 1234756, ..., 7652431, 7653142, 7654132.
		

Crossrefs

Column k=1 of A197365.

Programs

  • Maple
    b:= proc(u, o, t, c) option remember; `if`(u+o=0, c, add(
          b(u-j, o+j-1, 0, c+`if`(j<=t, 1, 0)), j=`if`(c=1, t, 0)
          +1..u) +add(b(u+j-1, o-j, j-1, c), j=1..o))
        end:
    a:= n-> b(n, 0$3):
    seq(a(n), n=3..30);
  • Mathematica
    Drop[Coefficient[CoefficientList[Series[1/(1 - (Sqrt[Pi/2]*Erfi[(Sqrt[u-1]*x) / Sqrt[2]])/Sqrt[u-1]), {x, 0, 25}], x] * Range[0, 25]!, u], 3] (* Vaclav Kotesovec, Oct 29 2015 *)

Formula

a(n) = A197365(n,1).
a(n) ~ c * d^n * n! * n, where d = 1/A240885 = 1/(sqrt(2) * InverseErf(sqrt(2/Pi))) = 0.78397693120354749... and c = 0.679554202696108785... . - Vaclav Kotesovec, Oct 29 2015