A263885 Number of permutations of [n] containing exactly one occurrence of the consecutive pattern 132.
1, 8, 54, 368, 2649, 20544, 172596, 1569408, 15398829, 162412416, 1834081890, 22093090560, 282889238253, 3837991053312, 55010010678120, 830731742908416, 13185328329110745, 219457733809563648, 3822426663111579150, 69538569862816419840, 1318999546575572747265
Offset: 3
Keywords
Examples
a(3) = 1: 132. a(4) = 8: 1243, 1324, 1423, 1432, 2143, 2431, 3142, 4132. a(5) = 54: 12354, 12435, 12534, ..., 52431, 53142, 54132. a(6) = 368: 123465, 123546, 123645, ..., 652431, 653142, 654132. a(7) = 2649: 1234576, 1234657, 1234756, ..., 7652431, 7653142, 7654132.
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..200
- Eric Weisstein's World of Mathematics, Inverse Erf
Crossrefs
Column k=1 of A197365.
Programs
-
Maple
b:= proc(u, o, t, c) option remember; `if`(u+o=0, c, add( b(u-j, o+j-1, 0, c+`if`(j<=t, 1, 0)), j=`if`(c=1, t, 0) +1..u) +add(b(u+j-1, o-j, j-1, c), j=1..o)) end: a:= n-> b(n, 0$3): seq(a(n), n=3..30);
-
Mathematica
Drop[Coefficient[CoefficientList[Series[1/(1 - (Sqrt[Pi/2]*Erfi[(Sqrt[u-1]*x) / Sqrt[2]])/Sqrt[u-1]), {x, 0, 25}], x] * Range[0, 25]!, u], 3] (* Vaclav Kotesovec, Oct 29 2015 *)
Formula
a(n) = A197365(n,1).
a(n) ~ c * d^n * n! * n, where d = 1/A240885 = 1/(sqrt(2) * InverseErf(sqrt(2/Pi))) = 0.78397693120354749... and c = 0.679554202696108785... . - Vaclav Kotesovec, Oct 29 2015