A263917 Riordan array (f(x)^3, f(x)), where 1 + x*f^3(x)/(1 - x*f(x)) = f(x).
1, 3, 1, 15, 4, 1, 85, 22, 5, 1, 519, 132, 30, 6, 1, 3330, 837, 190, 39, 7, 1, 22135, 5516, 1250, 260, 49, 8, 1, 151089, 37404, 8461, 1773, 343, 60, 9, 1, 1052805, 259280, 58550, 12324, 2422, 440, 72, 10, 1, 7458236, 1829018, 412375, 87045, 17283, 3214, 552, 85, 11, 1
Offset: 0
Examples
Triangle begins: 1 3 1 15 4 1 85 22 5 1 519 132 30 6 1 3330 837 190 39 7 1 22135 5516 1250 260 49 8 1 151089 37404 8461 1773 343 60 9 1
Links
- J.-C. Novelli and J.-Y. Thibon, Noncommutative Symmetric Functions and Lagrange Inversion, arXiv:math/0512570 [math.CO], 2005-2006.
Programs
-
Maple
# For the function TreesByArityOfTheRoot_Row(m, n) see A263918. A263917_row := n -> TreesByArityOfTheRoot_Row(2,n): seq(A263917_row(n), n=0..9); # Peter Luschny, Oct 31 2015
-
Mathematica
rows = 9; f[] = 1; Do[f[x] = 1 + x*f[x]*(f[x]^2 + f[x] - 1) + O[x]^(rows+1) // Normal, {rows+1}]; coes = CoefficientList[f[x]^3/(1 - x*t*f[x]) + O[x]^(rows+1), x]; row[n_] := CoefficientList[coes[[n+1]], t]; Table[row[n], {n, 0, rows}] // Flatten (* Jean-François Alcover, Jul 19 2018 *)
Comments