A263927 Least solution x to the equation x' = (x+1)/n, where x' is the arithmetic derivative of x; -1 if no solution exists.
30, 15, 2, 3, 119, 5, 209, 7, 323, 559, 527, 11, 779, 13, 899, 1919, 1189, 17, 2507, 19, 1763, 42455401, 2759, 23, 5249, 2911, 3239, 23519, 3827, 29, 5207, 31
Offset: 1
Examples
30' = 31 and 31 = (30 + 1) / 1; 15' = 8 and 8 =(15 + 1) / 2; 2' = 1 and 1 = (2 + 1) / 3.
Links
- Paolo P. Lava, Values for n<=100
Programs
-
Maple
with(numtheory): P:=proc(q) local a,k,n,p; for k from 1 to q do for n from 1 to q do if n*add(op(2,p)/op(1,p),p=ifactors(n)[2])=(n+1)/k then print(n); break; fi; od; od; end: P(10^9);
-
Mathematica
f[n_] := If[Abs@ n < 2, 0, n Total[#2/#1 & @@@ FactorInteger@ Abs@ n]]; Table[k = 0; While[f@ k != (k + 1)/n, k++]; k, {n, 21}] (* Michael De Vlieger, Nov 05 2015, after Michael Somos at A003415 *)
-
PARI
d(x) = {local(fac); if(x<1, 0, fac=factor(x); sum(i=1, matsize(fac)[1], x*fac[i, 2]/fac[i, 1]))} a(n) = {x=2; while(k, if(d(x) == (x+1)/n, return(x)); x++)} \\ Altug Alkan, Nov 05 2015
Formula
a(n) = n-1 if n-1 is a prime.
Extensions
Added a(52) and a(58) in a-file by Giovanni Resta, Jul 09 2018
Comments