A263945 Positive integers n such that (n+39)^3 - n^3 is a square.
26, 871, 59930, 1155895, 77814386, 1500376111, 101003038370, 1947487061455, 131101866015146, 2527836705417751, 170170121084646410, 3281130096145204615, 220880686066005050306, 4258904336959770197791, 286702960343553470676050, 5528054548243685571553375
Offset: 1
Examples
26 is in the sequence because (26+39)^3 - 26^3 = 507^2.
Links
- Colin Barker, Table of n, a(n) for n = 1..642
- Index entries for linear recurrences with constant coefficients, signature (1,1298,-1298,-1,1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{1,1298,-1298,-1,1},{26,871,59930,1155895,77814386},20] (* Harvey P. Dale, Mar 25 2020 *)
-
PARI
Vec(13*x*(5*x^4+65*x^3-1947*x^2-65*x-2)/((x-1)*(x^2-36*x-1)*(x^2+36*x-1)) + O(x^30))
Formula
a(n) = a(n-1)+1298*a(n-2)-1298*a(n-3)-a(n-4)+a(n-5) for n>5.
G.f.: 13*x*(5*x^4+65*x^3-1947*x^2-65*x-2) / ((x-1)*(x^2-36*x-1)*(x^2+36*x-1)).