cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264008 Index of the smallest Fibonacci number divisible by prime(n)^2.

Original entry on oeis.org

6, 12, 25, 56, 110, 91, 153, 342, 552, 406, 930, 703, 820, 1892, 752, 1431, 3422, 915, 4556, 4970, 2701, 6162, 6972, 979, 4753, 5050, 10712, 3852, 2943, 2147, 16256, 17030, 9453, 6394, 5513, 7550, 12403, 26732, 28056, 15051, 31862, 16290, 36290, 18721, 19503, 4378, 8862, 49952, 51756, 26106, 3029, 56882, 28920
Offset: 1

Views

Author

R. J. Mathar, Oct 31 2015

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local p, phi,q,k,G,Fkm,Fk,M,W,m;
      p:= ithprime(n);
      if member(p mod 5, {1,4}) then
        phi:= rhs(op(msolve(x^2-x-1,p^2)[1]));
        q:= -1-phi mod p^2;
        return numtheory:-order(q,p^2);
      fi;
      G:= GF(p,2,alpha^2-alpha-1);
      q:= G:-ConvertIn(-1-alpha);
      k:= G:-order(q);
      Fkm:= combinat:-fibonacci(k-1) mod p^2;
      Fk:= combinat:-fibonacci(k) mod p^2;
      M:= <|>;
      W:= <0,1>;
      for m from 1 do
         W:= M . W mod p^2;
         if W[1] = 0 then return(m*k) fi
      od:
    end proc:
    f(3):= 25:
    map(f, [$1..100]); # Robert Israel, Jan 04 2018
  • PARI
    a(n) = if(n==3, 25, my(p=prime(n)); fordiv(p^2-1, d, if(fibonacci(d)%p==0, return(d*p)))); \\ Altug Alkan, Oct 31 2015

Formula

a(n) = prime(n)*A001602(n).
a(n) = min{i: A001248(n) | A000045(i)}