A264033 Triangle read by rows: T(n,k) (n>=0, 0<=k<=A130519(n+1)) is the number of integer partitions of n having k pairs of different size.
1, 1, 2, 2, 1, 3, 1, 1, 2, 2, 2, 1, 4, 2, 1, 2, 2, 2, 3, 3, 3, 1, 2, 1, 4, 3, 3, 3, 2, 3, 2, 1, 1, 3, 4, 3, 5, 2, 5, 2, 2, 1, 2, 1, 4, 4, 4, 7, 3, 4, 2, 4, 5, 1, 0, 2, 2, 2, 5, 5, 8, 2, 9, 4, 4, 3, 4, 1, 4, 1, 1, 2, 1, 6, 5, 4, 9, 4, 9, 4, 6, 5, 7, 2, 4, 3, 1, 2, 2, 2, 1, 1
Offset: 0
Examples
Triangle begins: 1; 1; 2; 2,1; 3,1,1; 2,2,2,1; 4,2,1,2,2; 2,3,3,3,1,2,1; 4,3,3,3,2,3,2,1,1; 3,4,3,5,2,5,2,2,1,2,1; 4,4,4,7,3,4,2,4,5,1,0,2,2; 2,5,5,8,2,9,4,4,3,4,1,4,1,1,2,1; 6,5,4,9,4,9,4,6,5,7,2,4,3,1,2,2,2,1,1; ...
References
- Richard Stanley, Enumerative combinatorics. Vol. 2 MathSciNet:1676282, page 375.
Links
- Alois P. Heinz, Rows n = 0..80, flattened
- FindStat - Combinatorial Statistic Finder, Degree of the polynomial counting the number of semistandard Young-tableaux of shape k*lambda.
Programs
-
Maple
b:= proc(n, i, p, t) option remember; expand( `if`(n=0, x^t, `if`(i<1, 0, add( b(n-i*j, i-1, p+j, t+j*p), j=0..n/i)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0$2)): seq(T(n), n=0..15); # Alois P. Heinz, Nov 01 2015
-
Mathematica
b[n_, i_, p_, t_] := b[n, i, p, t] = Expand[If[n==0, x^t, If[i<1, 0, Sum[b[n-i*j, i-1, p+j, t+j*p], {j, 0, n/i}]]]]; T[n_] := Function [p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, 0, 0]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Feb 03 2017, after Alois P. Heinz *)
Formula
Sum_{k>0} k * T(n,k) = A271370(n). - Alois P. Heinz, Apr 05 2016
Comments