cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264033 Triangle read by rows: T(n,k) (n>=0, 0<=k<=A130519(n+1)) is the number of integer partitions of n having k pairs of different size.

Original entry on oeis.org

1, 1, 2, 2, 1, 3, 1, 1, 2, 2, 2, 1, 4, 2, 1, 2, 2, 2, 3, 3, 3, 1, 2, 1, 4, 3, 3, 3, 2, 3, 2, 1, 1, 3, 4, 3, 5, 2, 5, 2, 2, 1, 2, 1, 4, 4, 4, 7, 3, 4, 2, 4, 5, 1, 0, 2, 2, 2, 5, 5, 8, 2, 9, 4, 4, 3, 4, 1, 4, 1, 1, 2, 1, 6, 5, 4, 9, 4, 9, 4, 6, 5, 7, 2, 4, 3, 1, 2, 2, 2, 1, 1
Offset: 0

Views

Author

Christian Stump, Nov 01 2015

Keywords

Comments

Row sums give A000041.
T(n,0) gives A000005(n) for n>0. - Alois P. Heinz, Nov 01 2015

Examples

			Triangle begins:
1;
1;
2;
2,1;
3,1,1;
2,2,2,1;
4,2,1,2,2;
2,3,3,3,1,2,1;
4,3,3,3,2,3,2,1,1;
3,4,3,5,2,5,2,2,1,2,1;
4,4,4,7,3,4,2,4,5,1,0,2,2;
2,5,5,8,2,9,4,4,3,4,1,4,1,1,2,1;
6,5,4,9,4,9,4,6,5,7,2,4,3,1,2,2,2,1,1;
...
		

References

  • Richard Stanley, Enumerative combinatorics. Vol. 2 MathSciNet:1676282, page 375.

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p, t) option remember; expand(
          `if`(n=0, x^t, `if`(i<1, 0, add(
           b(n-i*j, i-1, p+j, t+j*p), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0$2)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Nov 01 2015
  • Mathematica
    b[n_, i_, p_, t_] := b[n, i, p, t] = Expand[If[n==0, x^t, If[i<1, 0, Sum[b[n-i*j, i-1, p+j, t+j*p], {j, 0, n/i}]]]]; T[n_] := Function [p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, 0, 0]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Feb 03 2017, after Alois P. Heinz *)

Formula

Sum_{k>0} k * T(n,k) = A271370(n). - Alois P. Heinz, Apr 05 2016