cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A237770 Number of standard Young tableaux with n cells without a succession v, v+1 in a row.

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 22, 59, 170, 516, 1658, 5583, 19683, 72162, 274796, 1082439, 4406706, 18484332, 79818616, 353995743, 1611041726, 7510754022, 35842380314, 174850257639, 871343536591, 4430997592209, 22978251206350, 121410382810005, 653225968918521
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Feb 13 2014

Keywords

Comments

A standard Young tableau (SYT) without a succession v, v+1 in a row is called a nonconsecutive tableau.
Also the number of ballot sequences without two consecutive elements equal. A ballot sequence B is a string such that, for all prefixes P of B, h(i)>=h(j) for iA000085).
First column (k=0) of A238125.

Examples

			The a(5) = 9 such tableaux of 5 are:
[1]   [2]  [3]   [4]  [5]  [6]  [7]  [8]  [9]
135   13   135   13   13   14   14   15   1
24    24   2     25   2    25   2    2    2
      5    4     4    4    3    3    3    3
                      5         5    4    4
                                          5
The corresponding ballot sequences are:
1:  [ 0 1 0 1 0 ]
2:  [ 0 1 0 1 2 ]
3:  [ 0 1 0 2 0 ]
4:  [ 0 1 0 2 1 ]
5:  [ 0 1 0 2 3 ]
6:  [ 0 1 2 0 1 ]
7:  [ 0 1 2 0 3 ]
8:  [ 0 1 2 3 0 ]
9:  [ 0 1 2 3 4 ]
		

Crossrefs

Cf. A000085 (all Young tableaux), A000957, A001181, A214021, A214087, A214159, A214875.
Cf. A238126 (tableaux with one succession), A238127 (two successions).

Programs

  • Maple
    h:= proc(l, j) option remember; `if`(l=[], 1,
          `if`(l[1]=0, h(subsop(1=[][], l), j-1), add(
          `if`(i<>j and l[i]>0 and (i=1 or l[i]>l[i-1]),
           h(subsop(i=l[i]-1, l), i), 0), i=1..nops(l))))
        end:
    g:= proc(n, i, l) `if`(n=0 or i=1, h([1$n, l[]], 0),
          `if`(i<1, 0, g(n, i-1, l)+
          `if`(i>n, 0, g(n-i, i, [i, l[]]))))
        end:
    a:= n-> g(n, n, []):
    seq(a(n), n=0..30);
    # second Maple program (counting ballot sequences):
    b:= proc(n, v, l) option remember;
          `if`(n<1, 1, add(`if`(i<>v and (i=1 or l[i-1]>l[i]),
           b(n-1, i, subsop(i=l[i]+1, l)), 0), i=1..nops(l))+
           b(n-1, nops(l)+1, [l[], 1]))
        end:
    a:= proc(n) option remember; forget(b); b(n-1, 1, [1]) end:
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, v_, l_List] := b[n, v, l] = If[n<1, 1, Sum[If[i != v && (i == 1 || l[[i-1]] > l[[i]]), b[n-1, i, ReplacePart[l, i -> l[[i]]+1]], 0], {i, 1, Length[l]}] + b[n-1, Length[l]+1, Append[l, 1]]]; a[n_] := a[n] = b[n-1, 1, {1}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 06 2015, translated from 2nd Maple program *)

Formula

a(n) = Sum_{k=1..A264078(n)} k * A264051(n,k). - Alois P. Heinz, Nov 02 2015

A264078 The maximal number of standard Young tableaux without a succession v, v+1 in a row that a single partition of n can have.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 6, 14, 30, 76, 170, 553, 1583, 5106, 14090, 41002, 164769, 603513, 2418348, 8335804, 28704417, 109618261, 466318442, 2114095511, 10276979159, 43213859606, 175668903294, 793946150358, 3490939879402, 15500974371599, 82490059523125
Offset: 0

Views

Author

Alois P. Heinz, Nov 02 2015

Keywords

Comments

A standard Young tableau (SYT) without a succession v, v+1 in a row is called a nonconsecutive tableau.

Examples

			a(6) = 6: partition [2,2,1,1] has 6 standard Young tableaux without a succession v, v+1 in a row, which is maximal for a partition of n=6:
15   14   14   13   13   13
26   26   25   26   25   24
3    3    3    4    4    5
4    5    6    5    6    6
		

Crossrefs

Programs

  • Maple
    h:= proc(l, j) option remember; `if`(l=[], 1,
          `if`(l[1]=0, h(subsop(1=[][], l), j-1), add(
          `if`(i<>j and l[i]>0 and (i=1 or l[i]>l[i-1]),
           h(subsop(i=l[i]-1, l), i), 0), i=1..nops(l))))
        end:
    g:= proc(n, i, l) `if`(n=0 or i=1, h([1$n, l[]], 0),
          `if`(i<1, 0, max(g(n, i-1, l),
          `if`(i>n, 0, g(n-i, i, [i, l[]])))))
        end:
    a:= n-> g(n$2, []):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 02 2015
  • Mathematica
    h[l_, j_] := h[l, j] = If[l == {}, 1, If[l[[1]] == 0, h[ReplacePart[l, 1 -> Sequence[]], j - 1], Sum[If[i != j && l[[i]] > 0 && (i == 1 || l[[i]] > l[[i - 1]]), h[ReplacePart[l, i -> l[[i]] - 1], i], 0], {i, 1, Length[l]} ]]]; g[n_, i_, l_] := g[n, i, l] = If[n == 0 || i == 1, h[Join[Array[1 &, n], l], 0], If[i < 1, 0, Max[g[n, i - 1, l], If[i > n, 0, g[n - i, i, Join[{i}, l]]]]]]; a[n_] := g[n, n, {}];  Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 22 2016, after Alois P. Heinz *)

Formula

a(n) = max { k : A264051(n,k) > 0 }.
Showing 1-2 of 2 results.