A237770 Number of standard Young tableaux with n cells without a succession v, v+1 in a row.
1, 1, 1, 2, 4, 9, 22, 59, 170, 516, 1658, 5583, 19683, 72162, 274796, 1082439, 4406706, 18484332, 79818616, 353995743, 1611041726, 7510754022, 35842380314, 174850257639, 871343536591, 4430997592209, 22978251206350, 121410382810005, 653225968918521
Offset: 0
Keywords
Examples
The a(5) = 9 such tableaux of 5 are: [1] [2] [3] [4] [5] [6] [7] [8] [9] 135 13 135 13 13 14 14 15 1 24 24 2 25 2 25 2 2 2 5 4 4 4 3 3 3 3 5 5 4 4 5 The corresponding ballot sequences are: 1: [ 0 1 0 1 0 ] 2: [ 0 1 0 1 2 ] 3: [ 0 1 0 2 0 ] 4: [ 0 1 0 2 1 ] 5: [ 0 1 0 2 3 ] 6: [ 0 1 2 0 1 ] 7: [ 0 1 2 0 3 ] 8: [ 0 1 2 3 0 ] 9: [ 0 1 2 3 4 ]
Links
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..68 (terms 0..48 from Alois P. Heinz)
- Timothy Y. Chow, Henrik Eriksson and C. Kenneth Fan, Chess Tableaux, The Electronic Journal of Combinatorics, vol.11, no.2, (2005).
- S. Dulucq and O. Guibert, Stack words, standard tableaux and Baxter permutations, Disc. Math. 157 (1996), 91-106.
- Wikipedia, Young tableau
Crossrefs
Programs
-
Maple
h:= proc(l, j) option remember; `if`(l=[], 1, `if`(l[1]=0, h(subsop(1=[][], l), j-1), add( `if`(i<>j and l[i]>0 and (i=1 or l[i]>l[i-1]), h(subsop(i=l[i]-1, l), i), 0), i=1..nops(l)))) end: g:= proc(n, i, l) `if`(n=0 or i=1, h([1$n, l[]], 0), `if`(i<1, 0, g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i, [i, l[]])))) end: a:= n-> g(n, n, []): seq(a(n), n=0..30); # second Maple program (counting ballot sequences): b:= proc(n, v, l) option remember; `if`(n<1, 1, add(`if`(i<>v and (i=1 or l[i-1]>l[i]), b(n-1, i, subsop(i=l[i]+1, l)), 0), i=1..nops(l))+ b(n-1, nops(l)+1, [l[], 1])) end: a:= proc(n) option remember; forget(b); b(n-1, 1, [1]) end: seq(a(n), n=0..30);
-
Mathematica
b[n_, v_, l_List] := b[n, v, l] = If[n<1, 1, Sum[If[i != v && (i == 1 || l[[i-1]] > l[[i]]), b[n-1, i, ReplacePart[l, i -> l[[i]]+1]], 0], {i, 1, Length[l]}] + b[n-1, Length[l]+1, Append[l, 1]]]; a[n_] := a[n] = b[n-1, 1, {1}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 06 2015, translated from 2nd Maple program *)
Comments