A264078 The maximal number of standard Young tableaux without a succession v, v+1 in a row that a single partition of n can have.
1, 1, 1, 1, 2, 3, 6, 14, 30, 76, 170, 553, 1583, 5106, 14090, 41002, 164769, 603513, 2418348, 8335804, 28704417, 109618261, 466318442, 2114095511, 10276979159, 43213859606, 175668903294, 793946150358, 3490939879402, 15500974371599, 82490059523125
Offset: 0
Keywords
Examples
a(6) = 6: partition [2,2,1,1] has 6 standard Young tableaux without a succession v, v+1 in a row, which is maximal for a partition of n=6: 15 14 14 13 13 13 26 26 25 26 25 24 3 3 3 4 4 5 4 5 6 5 6 6
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..60
- Wikipedia, Young tableau
Programs
-
Maple
h:= proc(l, j) option remember; `if`(l=[], 1, `if`(l[1]=0, h(subsop(1=[][], l), j-1), add( `if`(i<>j and l[i]>0 and (i=1 or l[i]>l[i-1]), h(subsop(i=l[i]-1, l), i), 0), i=1..nops(l)))) end: g:= proc(n, i, l) `if`(n=0 or i=1, h([1$n, l[]], 0), `if`(i<1, 0, max(g(n, i-1, l), `if`(i>n, 0, g(n-i, i, [i, l[]]))))) end: a:= n-> g(n$2, []): seq(a(n), n=0..30); # Alois P. Heinz, Nov 02 2015
-
Mathematica
h[l_, j_] := h[l, j] = If[l == {}, 1, If[l[[1]] == 0, h[ReplacePart[l, 1 -> Sequence[]], j - 1], Sum[If[i != j && l[[i]] > 0 && (i == 1 || l[[i]] > l[[i - 1]]), h[ReplacePart[l, i -> l[[i]] - 1], i], 0], {i, 1, Length[l]} ]]]; g[n_, i_, l_] := g[n, i, l] = If[n == 0 || i == 1, h[Join[Array[1 &, n], l], 0], If[i < 1, 0, Max[g[n, i - 1, l], If[i > n, 0, g[n - i, i, Join[{i}, l]]]]]]; a[n_] := g[n, n, {}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 22 2016, after Alois P. Heinz *)
Formula
a(n) = max { k : A264051(n,k) > 0 }.
Comments