cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264173 Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of the consecutive pattern 1324; triangle T(n,k), n>=0, 0<=k<=max(0,floor(n/2-1)), read by rows.

Original entry on oeis.org

1, 1, 2, 6, 23, 1, 110, 10, 632, 86, 2, 4229, 782, 29, 32337, 7571, 407, 5, 278204, 78726, 5856, 94, 2659223, 882997, 84351, 2215, 14, 27959880, 10657118, 1251246, 48234, 322, 320706444, 137977980, 19318314, 984498, 14322, 42, 3985116699, 1910131680, 311306106
Offset: 0

Views

Author

Alois P. Heinz, Nov 06 2015

Keywords

Comments

Pattern 4231 gives the same triangle.

Examples

			T(4,1) = 1: 1324.
T(6,2) = 2: 132546, 142536.
T(8,3) = 5: 13254768, 13264758, 14253768, 14263758, 15263748.
T(10,4) = 14: 132547698(10), 132548697(10), 132647598(10), 132648597(10), 132748596(10), 142537698(10), 142538697(10), 142637598(10), 142638597(10), 142738596(10), 152637498(10), 152638497(10), 152738496(10), 162738495(10).
Triangle T(n,k) begins:
00 :        1;
01 :        1;
02 :        2;
03 :        6;
04 :       23,      1;
05 :      110,     10;
06 :      632,     86,     2;
07 :     4229,    782,    29;
08 :    32337,   7571,   407,    5;
09 :   278204,  78726,  5856,   94;
10 :  2659223, 882997, 84351, 2215, 14;
		

Crossrefs

Row sums give A000142.
T(2n+2,n) gives A000108(n) for n>0.
Cf. A004526, A061206, A264319 (pattern 3412).

Programs

  • Maple
    b:= proc(u, o, t) option remember; expand(`if`(u+o=0, 1,
          add(b(u-j, o+j-1, `if`(t>0 and j (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
    seq(T(n), n=0..14);
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = Expand[If[u + o == 0, 1, Sum[b[u - j, o + j - 1, If[t > 0 && j < t, -j, 0]], {j, 1, u}] + Sum[b[u + j - 1, o - j, j] * If[t < 0 && -j <= t, x, 1], {j, 1, o}]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n, 0, 0]];
    Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Apr 30 2017, translated from Maple *)

Formula

Sum_{k>0} k * T(n,k) = ceiling((n-3)*n!/4!) = A061206(n-3) (for n>3).