A264201 Numerator of sum of numbers in set g(n) generated as in Comments.
0, 1, 7, 46, 265, 1519, 8560, 47578, 264076, 1461439, 8075011, 44596708, 246189961, 1358762089, 7498499272, 41378660380, 228330571360, 1259923712821, 6952163820391, 38361311420962, 211673092313329, 1167984733037851, 6444783128779528, 35561432547881926
Offset: 0
Examples
g(0) = {0}, sum = 0. g(1) = {1}, sum = 1. g(2) = {1/3,2/1}, sum = 7/3. g(3) = {1/9,2/3,4/3,3/1}, sum = 46/9.
Crossrefs
Cf. A264200.
Programs
-
Mathematica
z = 5; x = 1/3; g[0] = {0}; g[1] = {1}; g[n_] := g[n] = Union[1 + g[n - 1], (1/3) Select[g[n - 1], # < 3 &]] Table[g[n], {n, 0, z}] Table[Total[g[n]], {n, 0, z}] u = Numerator[Table[Total[g[n]], {n, 0, z}] ]
Formula
Conjecture: a(n) = 4*a(n-1) + 9*a(n-2) + 18*a(n-3) - 81*a(n-4) - 162*a(n-5) - 243*a(n-6).
Comments