cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264224 G.f. A(x) satisfies: A(x)^2 = A( x^2/(1-4*x) ), with A(0) = 0.

Original entry on oeis.org

1, 2, 7, 26, 103, 422, 1774, 7604, 33109, 146042, 651256, 2931392, 13301038, 60775340, 279393742, 1291311620, 5996491666, 27962898020, 130883946751, 614664907706, 2895279687655, 13674609742598, 64744203198388, 307221794213768, 1460778188820220, 6958635514922552, 33205258829750809, 158699556581760134
Offset: 1

Views

Author

Paul D. Hanna, Nov 08 2015

Keywords

Comments

Radius of convergence is r = 1/5, where r = r^2/(1-4*r), with A(r) = 1.
Compare to a g.f. M(x) of Motzkin numbers: M(x)^2 = M(x^2/(1-2*x)) where M(x) = (1-x - sqrt(1-2*x-3*x^2))/(2*x).

Examples

			G.f.: A(x) = x + 2*x^2 + 7*x^3 + 26*x^4 + 103*x^5 + 422*x^6 + 1774*x^7 + 7604*x^8 + 33109*x^9 + 146042*x^10 + 651256*x^11 + 2931392*x^12 +...
where A(x)^2 = A(x^2/(1-4*x)).
RELATED SERIES.
A(x)^2 = x^2 + 4*x^3 + 18*x^4 + 80*x^5 + 359*x^6 + 1620*x^7 + 7354*x^8 + 33568*x^9 + 154023*x^10 + 710156*x^11 + 3289142*x^12 + 15297744*x^13 +...
sqrt(A(x)/x) = 1 + x + 3*x^2 + 10*x^3 + 37*x^4 + 144*x^5 + 582*x^6 + 2418*x^7 + 10266*x^8 + 44353*x^9 + 194395*x^10 +...+ A264231(n)*x^n +...
A( x/(1+2*x) ) = x + 3*x^3 + 15*x^5 + 90*x^7 + 597*x^9 + 4212*x^11 + 30942*x^13 + 233766*x^15 + 1802706*x^17 + 14122359*x^19 + 112033791*x^21 + 898024320*x^23 +...
A( x^2/(1-4*x^2) ) = x^2 + 6*x^4 + 39*x^6 + 270*x^8 + 1959*x^10 + 14706*x^12 + 113166*x^14 + 887004*x^16 + 7050837*x^18 + 56672622*x^20 + 459646488*x^22 +...
where A( x^2/(1-4*x^2) ) = A( x/(1+2*x) )^2.
Let B(x) = x/Series_Reversion(A(x)), then A(x) = x*B(A(x)), where
B(x) = 1 + 2*x + 3*x^2 - 3*x^4 + 9*x^6 - 33*x^8 + 126*x^10 - 513*x^12 + 2214*x^14 - 9876*x^16 + 45045*x^18 - 209493*x^20 +...+ A264412(n)*x^(2*n) +...
such that B(x) = F(x^2) + 2*x = F(x)^2 - 4*x and F(x) is the g.f. of A264412.
PARTICULAR VALUES.
A(1/5) = 1.
A(-1/5) = -A(1/9) = -0.15262256991492310976978497600904...
A(1/6)^2 = A(1/12) = 0.10315964246752710052686298695713...
A(1/6)^4 = A(1/96) = 0.01064191183402802084987998396215...
A(1/7)^2 = A(1/21) = 0.053075120978549663441827849989065...
A(1/7)^4 = A(1/357) = 0.002816968466887682583828696137137...
A(1/8)^2 = A(1/32) = 0.033445065874191867268119916059631...
A(1/8)^4 = A(1/896) = 0.001118572431329033410718706838540...
A(1/9)^2 = A(1/45) = 0.0232936488474355927381514600230212...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x); for(i=1,n, A = sqrt( subst(A,x,x^2/(1-4*x +x*O(x^n))) ) ); polcoeff(A,n)}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. also satisfies:
(1) A(x) = -A( -x/(1-4*x) ).
(2) A( x/(1+2*x) ) = -A( -x/(1-2*x) ), an odd function.
(3) A( x/(1+2*x) )^2 = A( x^2/(1-4*x^2) ), an even function.
(4) A(x)^4 = A( x^4/((1-4*x)*(1-4*x-4*x^2)) ).
(5) [x^(2*n+1)] (x/A(x))^(2*n) = 0 for n>=0.
(6) [x^(2^n+k)] (x/A(x))^(2^n) = 0 for k=1..2^n-1, n>=1.
Given g.f. A(x), let F(x) denote the g.f. of A264412, then:
(7) A(x) = F(A(x))^2 * x/(1+4*x),
(8) A(x) = F(A(x)^2) * x/(1-2*x),
(9) A( x/(F(x)^2 - 4*x) ) = x,
(10) A( x/(F(x^2) + 2*x) ) = x,
where F(x)^2 = F(x^2) + 6*x.
Sum_{k=0..n} binomial(n,k) * (-2)^(n-k) * a(k+1) = 0 for odd n.
Sum_{k=0..n} binomial(n,k) * (-4)^(n-k) * a(k+1) = (-1)^n * a(n+1) for n>=0.
Sum_{k=0..n} binomial(n,k) * (+4)^(n-k) * a(k+1) = A264232(n+1) for n>=0.
Sum_{k=0..n} binomial(n,k) * (-8)^(n-k) * a(k+1) = (-1)^n * A264232(n+1) for n>=0.