cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264225 G.f. A(x) satisfies: A(x)^2 = A( x^2/(1-6*x) ), with A(0) = 0.

Original entry on oeis.org

1, 3, 15, 81, 462, 2718, 16344, 99900, 618567, 3870909, 24441021, 155510523, 996109245, 6418243575, 41572149615, 270536350545, 1767990955980, 11598120859860, 76347126498420, 504148079084940, 3338585176489560, 22166530404950520, 147525638070221640, 983978335278966456, 6576191509703182677, 44031626057441376423
Offset: 1

Views

Author

Paul D. Hanna, Nov 08 2015

Keywords

Comments

Radius of convergence is r = 1/7, where r = r^2/(1-6*r), with A(r) = 1.
Compare to a g.f. M(x) of Motzkin numbers: M(x)^2 = M(x^2/(1-2*x)) where M(x) = (1-x - sqrt(1-2*x-3*x^2))/(2*x).

Examples

			G.f.: A(x) = x + 3*x^2 + 15*x^3 + 81*x^4 + 462*x^5 + 2718*x^6 + 16344*x^7 + 99900*x^8 + 618567*x^9 + 3870909*x^10 + 24441021*x^11 + 155510523*x^12 +...
where A(x)^2 = A(x^2/(1-6*x)).
RELATED SERIES.
A(x)^2 = x^2 + 6*x^3 + 39*x^4 + 252*x^5 + 1635*x^6 + 10638*x^7 + 69417*x^8 + 454248*x^9 + 2980614*x^10 + 19609380*x^11 + 129337686*x^12 +...
A( x/(1+3*x) ) = x + 6*x^3 + 57*x^5 + 630*x^7 + 7584*x^9 + 96552*x^11 + 1277937*x^13 + 17393454*x^15 + 241666275*x^17 + 3410638362*x^19 + 48723929721*x^21 +...
A( x^2/(1-9*x^2) ) = x^2 + 12*x^4 + 150*x^6 + 1944*x^8 + 25977*x^10 + 355932*x^12 + 4975974*x^14 + 70684920*x^16 + 1016911392*x^18 + 14778827136*x^20 +...
where A( x^2/(1-9*x^2) ) = A( x/(1+3*x) )^2.
Let B(x) = x/Series_Reversion(A(x)), then A(x) = x*B(A(x)), where
B(x) = 1 + 3*x + 6*x^2 - 15*x^4 + 90*x^6 - 660*x^8 + 5310*x^10 - 45765*x^12 + 413640*x^14 - 3864345*x^16 + 37014120*x^18 +...+ A264413(n)*x^(2*n) +...
such that B(x) = F(x^2) + 3*x = F(x)^2 - 9*x and F(x) is the g.f. of A264413.
		

Crossrefs

Programs

  • Mathematica
    max = 25; For[A = x; i = 1, i <= max, i++, A = Sqrt[Normal[A] /. x -> x^2/(1 - 6*x + x*O[x]^max)]]; CoefficientList[A, x] // Rest (* Jean-François Alcover, Nov 22 2016 *)
  • PARI
    {a(n) = my(A=x); for(i=1,n, A = sqrt( subst(A,x,x^2/(1-6*x +x*O(x^n))) ) ); polcoeff(A,n)}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. also satisfies:
(1) A(x) = -A( -x/(1-6*x) ).
(2) A( x/(1+3*x) ) = -A( -x/(1-3*x) ), an odd function.
(3) A( x/(1+3*x) )^2 = A( x^2/(1-9*x^2) ), an even function.
(4) A(x)^4 = A( x^4/((1-6*x)*(1-6*x-6*x^2)) ).
(5) [x^(2*n+1)] (x/A(x))^(2*n) = 0 for n>=0.
(6) [x^(2^n+k)] (x/A(x))^(2^n) = 0 for k=1..2^n-1, n>=1.
Given g.f. A(x), let F(x) denote the g.f. of A264413, then:
(7) A(x) = F(A(x))^2 * x/(1+9*x),
(8) A(x) = F(A(x)^2) * x/(1-3*x),
(9) A( x/(F(x)^2 - 9*x) ) = x,
(10) A( x/(F(x^2) + 3*x) ) = x,
where F(x)^2 = F(x^2) + 12*x.
Sum_{k=0..n} binomial(n,k) * (-3)^(n-k) * a(k+1) = 0 for odd n.
Sum_{k=0..n} binomial(n,k) * (-6)^(n-k) * a(k+1) = (-1)^n * a(n+1) for n>=0.