cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264231 G.f. satisfies: A(x) = A( -x/(1-4*x) ) / sqrt(1-4*x), with A(0)=1.

Original entry on oeis.org

1, 1, 3, 10, 37, 144, 582, 2418, 10266, 44353, 194395, 862308, 3864100, 17466055, 79537815, 364543920, 1680205044, 7782321357, 36202366293, 169056409476, 792157776138, 3723252477558, 17548166926908, 82913613567012, 392650956009063, 1863327440038659, 8859299215070493, 42196115735716894, 201303626788647712, 961803888607574670
Offset: 0

Views

Author

Paul D. Hanna, Nov 29 2015

Keywords

Comments

Self-convolution square root of A264224.
Radius of convergence is r = 1/5 with A(1/5) = sqrt(5).

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 37*x^4 + 144*x^5 + 582*x^6 + 2418*x^7 +...
where A(x) = A( -x/(1-4*x) ) / sqrt(1-4*x).
RELATED SERIES.
Note that A(x)^2 = A( x^2/(1-4*x) ) / sqrt(1-4*x):
A(x)^2 = 1 + 2*x + 7*x^2 + 26*x^3 + 103*x^4 + 422*x^5 + 1774*x^6 + 7604*x^7 + 33109*x^8 + 146042*x^9 + 651256*x^10 +...+ A264224(n-1)*x^n +...
where
A( x^2/(1-4*x) ) = 1 + x^2 + 4*x^3 + 19*x^4 + 88*x^5 + 410*x^6 + 1912*x^7 + 8933*x^8 + 41808*x^9 + 196016*x^10 + 920640*x^11 + 4331590*x^12 +...
Also,
A( x/(1+2*x) ) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 8*x^5 + 30*x^6 + 42*x^7 + 198*x^8 + 257*x^9 + 1385*x^10 + 1724*x^11 + 10072*x^12 +...
such that
A( x/(1+2*x) )^2 / (1+2*x) = 1 + 3*x^2 + 15*x^4 + 90*x^6 + 597*x^8 + 4212*x^10 + 30942*x^12 + 233766*x^14 + 1802706*x^16 +...
equals A( x^2/(1-4*x^2) ) / sqrt(1-4*x^2).
		

Crossrefs

Cf. A264224.

Programs

  • PARI
    {a(n) = my(A=1+x,X=x+x*O(x^n)); for(i=1, n, A = subst(A, x, x^2/(1-4*X))^(1/2)/(1-4*X)^(1/4)  ); polcoeff(A, n)}
    for(n=0,30, print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) A(x)^2 = A( x^2/(1-4*x) ) / sqrt(1-4*x).
(2) A( x/(1+2*x) )^2 / (1+2*x) = A( x^2/(1-4*x^2) ) / sqrt(1-4*x^2).