cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264272 T(n,k)=Number of (n+1)X(k+1) arrays of permutations of 0..(n+1)*(k+1)-1 with each element having index change +-(.,.) 0,0 1,0 or 1,2.

Original entry on oeis.org

4, 10, 9, 25, 48, 25, 65, 256, 305, 64, 169, 1280, 3721, 1800, 169, 442, 6400, 40626, 50625, 10933, 441, 1156, 32000, 443556, 1143000, 707281, 65856, 1156, 3026, 160000, 4861800, 25806400, 33729146, 9834496, 397970, 3025, 7921, 800000, 53290000
Offset: 1

Views

Author

R. H. Hardin, Nov 10 2015

Keywords

Comments

Table starts
....4......10.........25...........65.............169................442
....9......48........256.........1280............6400..............32000
...25.....305.......3721........40626..........443556............4861800
...64....1800......50625......1143000........25806400..........600090240
..169...10933.....707281.....33729146......1608491236........80568542340
..441...65856....9834496....981994496.....98054154496.....10563801093680
.1156..397970..137007025..28735927165...6027088830169...1398071103483637
.3025.2402455.1908029761.839596650695.369450492999025.184549492112860840

Examples

			Some solutions for n=3 k=4
..5..8..7..3..4....5..1..9..3..4....0..8..2..3..4....0..8..2..3..9
..0..6..2..1.14....0.11..2..8.14....5.13.14..1..9....5..1.12.13..4
.10.18.19.13..9...10.18..7..6.19...15.16.12..6..7...15.16..7..6.19
.15.16.17.11.12...15.16.17.13.12...10.11.17.18.19...10.11.17.18.14
		

Crossrefs

Column 1 is A007598(n+2).
Row 1 is A166516(n+2).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) +2*a(n-2) -a(n-3)
k=2: [order 8]
k=3: a(n) = 14*a(n-1) +14*a(n-2) -210*a(n-3) +210*a(n-5) -14*a(n-6) -14*a(n-7) +a(n-8)
k=4: [order 52]
k=5: [order 96]
Empirical for row n:
n=1: a(n) = 3*a(n-1) -3*a(n-3) +a(n-4)
n=2: a(n) = 5*a(n-1) for n>3
n=3: [order 22]
n=4: [order 25] for n>27