A264319 Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of the consecutive pattern 3412; triangle T(n,k), n>=0, 0<=k<=max(0,floor(n/2-1)), read by rows.
1, 1, 2, 6, 23, 1, 110, 10, 631, 88, 1, 4223, 794, 23, 32301, 7639, 379, 1, 277962, 79164, 5706, 48, 2657797, 885128, 84354, 1520, 1, 27954521, 10657588, 1266150, 38452, 89, 320752991, 137752283, 19621124, 869740, 5461, 1, 3987045780, 1904555934, 316459848
Offset: 0
Examples
T(4,1) = 1: 3412. T(5,1) = 10: 14523, 24513, 34125, 34512, 35124, 43512, 45123, 45132, 45231, 53412. T(6,2) = 1: 563412. T(7,2) = 23: 1674523, 2674513, 3674512, 4673512, 5614723, 5624713, 5634127, 5634712, 5673412, 5714623, 5724613, 5734126, 5734612, 6573412, 6714523, 6724513, 6734125, 6734512, 6735124, 6745123, 6745132, 6745231, 7563412. T(8,3) = 1: 78563412. T(9,3) = 48: 189674523, 289674513, 389674512, ..., 896745132, 896745231, 978563412. Triangle T(n,k) begins: 00 : 1; 01 : 1; 02 : 2; 03 : 6; 04 : 23, 1; 05 : 110, 10; 06 : 631, 88, 1; 07 : 4223, 794, 23; 08 : 32301, 7639, 379, 1; 09 : 277962, 79164, 5706, 48; 10 : 2657797, 885128, 84354, 1520, 1;
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(expand( b(u+j-1, o-j, j)*`if`(t<0 and j<1-t, x, 1)), j=1..o)+ add(b(u-j, o+j-1, `if`(t>0 and j>t, t-j, 0)), j=1..u)) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)): seq(T(n), n=0..14);
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Sum[Expand[b[u+j-1, o-j, j]*If[t<0 && j<1-t, x, 1]], {j, 1, o}] + Sum[b[u-j, o+j-1, If[t>0 && j>t, t-j, 0]], {j, 1, u}]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0, 0]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jan 16 2017, translated from Maple_ *)
Formula
Sum_{k>0} k * T(n,k) = ceiling((n-3)*n!/4!) = A061206(n-3) (for n>3).
Comments