cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264319 Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of the consecutive pattern 3412; triangle T(n,k), n>=0, 0<=k<=max(0,floor(n/2-1)), read by rows.

Original entry on oeis.org

1, 1, 2, 6, 23, 1, 110, 10, 631, 88, 1, 4223, 794, 23, 32301, 7639, 379, 1, 277962, 79164, 5706, 48, 2657797, 885128, 84354, 1520, 1, 27954521, 10657588, 1266150, 38452, 89, 320752991, 137752283, 19621124, 869740, 5461, 1, 3987045780, 1904555934, 316459848
Offset: 0

Views

Author

Alois P. Heinz, Nov 11 2015

Keywords

Comments

Pattern 2143 gives the same triangle.

Examples

			T(4,1) = 1: 3412.
T(5,1) = 10: 14523, 24513, 34125, 34512, 35124, 43512, 45123, 45132, 45231, 53412.
T(6,2) = 1: 563412.
T(7,2) = 23: 1674523, 2674513, 3674512, 4673512, 5614723, 5624713, 5634127, 5634712, 5673412, 5714623, 5724613, 5734126, 5734612, 6573412, 6714523, 6724513, 6734125, 6734512, 6735124, 6745123, 6745132, 6745231, 7563412.
T(8,3) = 1: 78563412.
T(9,3) = 48: 189674523, 289674513, 389674512, ..., 896745132, 896745231, 978563412.
Triangle T(n,k) begins:
00 :       1;
01 :       1;
02 :       2;
03 :       6;
04 :      23,      1;
05 :     110,     10;
06 :     631,     88,     1;
07 :    4223,    794,    23;
08 :   32301,   7639,   379,    1;
09 :  277962,  79164,  5706,   48;
10 : 2657797, 885128, 84354, 1520, 1;
		

Crossrefs

Row sums give A000142.
Cf. A004526, A061206, A264173 (pattern 1324).

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(expand(
           b(u+j-1, o-j, j)*`if`(t<0 and j<1-t, x, 1)), j=1..o)+
          add(b(u-j, o+j-1, `if`(t>0 and j>t, t-j, 0)), j=1..u))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
    seq(T(n), n=0..14);
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Sum[Expand[b[u+j-1, o-j, j]*If[t<0 && j<1-t, x, 1]], {j, 1, o}] + Sum[b[u-j, o+j-1, If[t>0 && j>t, t-j, 0]], {j, 1, u}]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0, 0]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jan 16 2017, translated from Maple_ *)

Formula

Sum_{k>0} k * T(n,k) = ceiling((n-3)*n!/4!) = A061206(n-3) (for n>3).