A264356 Number of partitions of n*(n-2) with n parts and at least one part > n.
1, 18, 197, 1844, 16457, 143975, 1249642, 10815498, 93576157, 810347897, 7027967095, 61060521549, 531506499178, 4635288747540, 40499108355263, 354472925956809, 3107795826264979, 27290688756270363, 240010330685355235, 2113784811395623970, 18641067229072645836
Offset: 4
Examples
a(4) = 1 from the partition (5,1,1,1) of 4*2 = 8 with 4 parts, at least one part > 4. a(5) = 18 from the following partitions of 15: (11,1,1,1,1), (10,2,1,1,1), (9,3,1,1,1), (9,2,2,1,1), (8,4,1,1,1), (8,3,2,1,1),(8,2,2,1,1), (7,5,1,1,1), (7,4,2,1,1), (7,3,3,1,1), (7,3,2,2,1), (7,2,2,2,2), (6,6,1,1,1), (6,5,2,1,1), (6,4,3,1,1), (6,4,2,2,1), (6,3,3,2,1), (6,3,2,2,2). 18 = 1 + 1 + 2 + 3 + 5 + 6. For n=7 sum the following number of partitions: for 29 the number of 6-part partitions for 6, for 28 the 6-part partitions of 7, ..., up to the 6-part partitions of 27 for 8.
Formula
a(n) = Sum_{j=0..n*(n-4)} T(n-1+j, n-1), with T(n, k) = A008284(n, k) (number of partitions of n with k parts), n >= 4.
Comments