A264396 Number of partitions of n such that the part sizes occurring in it form an interval that does not start at 1.
0, 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 8, 8, 9, 12, 12, 14, 17, 18, 21, 25, 26, 30, 36, 39, 43, 51, 55, 62, 73, 78, 88, 101, 110, 125, 141, 154, 172, 195, 215, 238, 269, 294, 327, 368, 402, 446, 498, 547, 606, 672, 737, 814, 903, 991, 1091, 1205, 1320, 1452, 1603, 1752, 1924, 2118, 2314, 2539, 2785, 3042, 3329, 3648, 3984
Offset: 1
Keywords
Examples
a(9) = 5 because there are these partitions of 9: 9, 54, 432, 333, and 3222.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- P. J. Grabner, A. Knopfmacher, Analysis of some new partition statistics, Ramanujan J., 12, 2006, 439-454.
Crossrefs
Cf. A251729.
Programs
-
Maple
g := sum(x^(2*j)*(product(1+x^i, i = 1 .. j-1))/(1-x^j), j = 1 .. 100): gser := series(g, x = 0, 80): seq(coeff(gser, x, n), n = 1 .. 70); # second Maple program: b:= proc(n, i) option remember; `if`(n=0, `if`(i=0, 0, 1), `if`(i<1 or n add(b(n, i), i=2..n): seq(a(n), n=1..70); # Alois P. Heinz, Nov 29 2015
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, If[i == 0, 0, 1], If[i < 1 || n < i, 0, Sum[b[n - i*j, i - 1], {j, 1, n/i}]]]; a[n_] := Sum[b[n, i], {i, 2, n}]; Table[a[n], {n, 1, 70}] (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)
Formula
G.f.: g = sum((x^{2j}/(1-x^j))*product(1+x^i, i=1..j), j=1..infinity).
a(n) ~ 3^(1/4) * Pi * exp(Pi*sqrt(n/3)) / (24 * n^(5/4)). - Vaclav Kotesovec, May 24 2018
Comments