cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264397 Sum of the sizes of the longest clique of all partitions of n.

Original entry on oeis.org

1, 3, 5, 10, 15, 26, 38, 60, 86, 127, 178, 255, 349, 484, 652, 885, 1174, 1565, 2049, 2689, 3481, 4510, 5779, 7407, 9403, 11933, 15029, 18908, 23636, 29511, 36641, 45432, 56063, 69076, 84753, 103833, 126730, 154438, 187584, 227485, 275056, 332066, 399811
Offset: 1

Views

Author

Emeric Deutsch, Nov 20 2015

Keywords

Comments

All parts of an integer partition with the same value form a clique. The size of a clique is the number of elements in the clique.
a(n) = Sum(k*A091602(n,k), k=1..n).

Examples

			a(4) = 10 because the partitions 4,31,22,211,1111 of 4 have longest clique sizes 1,1,2,2,4, respectively.
		

Crossrefs

Programs

  • Maple
    g := (sum(k*(product(1-x^(j*(k+1)), j = 1 .. 100) - product(1-x^(j*k), j = 1 .. 100)), k = 1 .. 100))/(product(1-x^j, j = 1 .. 100)): gser := series(g, x = 0, 53): seq(coeff(gser, x, n), n = 1 .. 50);
  • Python
    from sympy.utilities.iterables import partitions
    def A264397(n): return sum(max(p.values()) for p in partitions(n)) # Chai Wah Wu, Sep 17 2023

Formula

G.f.: g(x) = sum(k*(product(1-x^{j*(k+1)}, j>=1) - product(1-x^{j*k}, j>=1)), k>=1)/product(1-x^j, j>=1).