A264397 Sum of the sizes of the longest clique of all partitions of n.
1, 3, 5, 10, 15, 26, 38, 60, 86, 127, 178, 255, 349, 484, 652, 885, 1174, 1565, 2049, 2689, 3481, 4510, 5779, 7407, 9403, 11933, 15029, 18908, 23636, 29511, 36641, 45432, 56063, 69076, 84753, 103833, 126730, 154438, 187584, 227485, 275056, 332066, 399811
Offset: 1
Keywords
Examples
a(4) = 10 because the partitions 4,31,22,211,1111 of 4 have longest clique sizes 1,1,2,2,4, respectively.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
g := (sum(k*(product(1-x^(j*(k+1)), j = 1 .. 100) - product(1-x^(j*k), j = 1 .. 100)), k = 1 .. 100))/(product(1-x^j, j = 1 .. 100)): gser := series(g, x = 0, 53): seq(coeff(gser, x, n), n = 1 .. 50);
-
Python
from sympy.utilities.iterables import partitions def A264397(n): return sum(max(p.values()) for p in partitions(n)) # Chai Wah Wu, Sep 17 2023
Formula
G.f.: g(x) = sum(k*(product(1-x^{j*(k+1)}, j>=1) - product(1-x^{j*k}, j>=1)), k>=1)/product(1-x^j, j>=1).
Comments