cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264405 Triangle read by rows: T(n,k) is the number of integer partitions of n having k repeated parts (each occurrence is counted).

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 2, 0, 1, 3, 0, 2, 1, 0, 1, 4, 0, 2, 2, 2, 0, 1, 5, 0, 4, 2, 1, 2, 0, 1, 6, 0, 6, 2, 3, 2, 2, 0, 1, 8, 0, 7, 4, 4, 2, 2, 2, 0, 1, 10, 0, 8, 6, 6, 4, 3, 2, 2, 0, 1, 12, 0, 13, 6, 6, 8, 3, 3, 2, 2, 0, 1, 15, 0, 15, 9, 11, 6, 9, 4, 3, 2, 2, 0, 1, 18, 0, 21, 10, 13, 12, 7, 8, 4, 3, 2, 2, 0, 1
Offset: 0

Views

Author

Emeric Deutsch, Dec 07 2015

Keywords

Comments

Compare with A264052 where only one occurrence of a repeated part is counted.
Sum of entries in row n = number of partitions of n = A000041(n).
Sum_{k>=0} k*T(n,k) = A194452(n).

Examples

			T(4,2) = 2 because each of the partitions [2,2] and [2,1,1] have 2 repeated parts, while [4], [3,1], [1,1,1,1] have 0 or 4 repeated parts.
Triangle starts:
  1;
  1, 0;
  1, 0, 1;
  2, 0, 0, 1;
  2, 0, 2, 0, 1;
  3, 0, 2, 1, 0, 1;
		

Crossrefs

Programs

  • Maple
    g := product(1+x^j+t^2*x^(2*j)/(1-t*x^j), j = 1 .. 100): gser := simplify(series(g, x = 0, 30)): for n from 0 to 20 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 20 do seq(coeff(P[n], t, k), k = 0 .. n) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(expand(b(n-i*j, i-1)*`if`(j>1, x^j, 1)), j=0..n/i)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)):
    seq(T(n), n=0..14);  # Alois P. Heinz, Dec 07 2015
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Expand[b[n - i*j, i - 1]*If[j > 1, x^j, 1]], {j, 0, n/i}]]]; T[n_] := Function[p, Table[ Coefficient[p, x, i], {i, 0, n}]][b[n, n]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jan 23 2016, after Alois P. Heinz *)

Formula

G.f.: G(t,x) = Product_{j>=1}(1 + x^j + t^2*x^{2j}/(1 - tx^j)).