A264405 Triangle read by rows: T(n,k) is the number of integer partitions of n having k repeated parts (each occurrence is counted).
1, 1, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 2, 0, 1, 3, 0, 2, 1, 0, 1, 4, 0, 2, 2, 2, 0, 1, 5, 0, 4, 2, 1, 2, 0, 1, 6, 0, 6, 2, 3, 2, 2, 0, 1, 8, 0, 7, 4, 4, 2, 2, 2, 0, 1, 10, 0, 8, 6, 6, 4, 3, 2, 2, 0, 1, 12, 0, 13, 6, 6, 8, 3, 3, 2, 2, 0, 1, 15, 0, 15, 9, 11, 6, 9, 4, 3, 2, 2, 0, 1, 18, 0, 21, 10, 13, 12, 7, 8, 4, 3, 2, 2, 0, 1
Offset: 0
Examples
T(4,2) = 2 because each of the partitions [2,2] and [2,1,1] have 2 repeated parts, while [4], [3,1], [1,1,1,1] have 0 or 4 repeated parts. Triangle starts: 1; 1, 0; 1, 0, 1; 2, 0, 0, 1; 2, 0, 2, 0, 1; 3, 0, 2, 1, 0, 1;
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Programs
-
Maple
g := product(1+x^j+t^2*x^(2*j)/(1-t*x^j), j = 1 .. 100): gser := simplify(series(g, x = 0, 30)): for n from 0 to 20 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 20 do seq(coeff(P[n], t, k), k = 0 .. n) end do; # yields sequence in triangular form # second Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(expand(b(n-i*j, i-1)*`if`(j>1, x^j, 1)), j=0..n/i))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)): seq(T(n), n=0..14); # Alois P. Heinz, Dec 07 2015
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Expand[b[n - i*j, i - 1]*If[j > 1, x^j, 1]], {j, 0, n/i}]]]; T[n_] := Function[p, Table[ Coefficient[p, x, i], {i, 0, n}]][b[n, n]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jan 23 2016, after Alois P. Heinz *)
Formula
G.f.: G(t,x) = Product_{j>=1}(1 + x^j + t^2*x^{2j}/(1 - tx^j)).
Comments