cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264432 Third-order Bell numbers.

Original entry on oeis.org

1, 1, 2, 6, 24, 119, 700, 4748, 36403, 310851, 2922606, 29977587, 332929492, 3978258079, 50872884285, 692985674373, 10015172966221, 153021613683924, 2464031776132958, 41698912656882644, 739771703127828419, 13727160292457369098, 265876635231121617716
Offset: 0

Views

Author

Peter Luschny, Dec 02 2015

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, h) option remember; `if`(min(n, h)=0, 1, add(
          binomial(n-1, j-1)*b(j-1, h-1)*b(n-j, h), j=1..n))
        end:
    a:= n-> b(n, 3):
    seq(a(n), n=0..22);  # Alois P. Heinz, Aug 21 2017
  • Mathematica
    b[n_, h_]:=b[n, h]=If[Min[n, h]==0, 1, Sum[Binomial[n - 1, j - 1] b[j - 1, h - 1] b[n - j, h] , {j, n}]]; Table[b[n, 3], {n, 0, 30}] (* Indranil Ghosh, Aug 21 2017, after Maple code *)
  • PARI
    \\ For n>23 precision has to be adapted as needed!
    A = exp('x + O('x^33) );
    B = exp( intformal(A) );
    C = exp( intformal(B) );
    D = exp( intformal(C) );
    Vec( serlaplace(D) )
    
  • Python
    from sympy.core.cache import cacheit
    from sympy import binomial
    @cacheit
    def b(n, h): return 1 if min(n, h)==0 else sum(binomial(n - 1, j - 1)*b(j - 1, h - 1)*b(n - j, h) for j in range(1, n + 1))
    def a(n): return b(n, 3)
    print([a(n) for n in range(31)]) # Indranil Ghosh, Aug 21 2017, after Maple code
  • Sage
    # uses[bell_transform from A264428]
    def A264432_list(dim):
        uno = [1]*dim
        bell_number = [sum(bell_transform(n, uno)) for n in range(dim)]
        bell_number_2 = [sum(bell_transform(n, bell_number)) for n in range(dim)]
        return [sum(bell_transform(n, bell_number_2)) for n in range(dim)]
    print(A264432_list(23))