A264440 Row lengths of the irregular triangle A137510 (number of divisors d of n with 1 < d < n, or 0 if no such d exists).
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 6, 1, 2, 2, 4, 1, 6, 1, 4, 2, 2, 2, 7, 1, 2, 2, 6, 1, 6, 1, 4, 4, 2, 1, 8, 1, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 10, 1, 2, 4, 5, 2, 6, 1, 4, 2, 6, 1, 10, 1, 2, 4, 4, 2, 6, 1, 8, 3, 2, 1, 10, 2, 2
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Maple
seq(max(1,numtheory:-tau(n)-2), n=1..100); # Robert Israel, Jan 20 2016
-
Mathematica
Array[DivisorSigma[0, #] - 2 &, {80}] /. n_ /; n < 2 -> 1 (* Michael De Vlieger, Jan 16 2016 *)
-
PARI
A264440(n) = max(1,numdiv(n)-2); \\ After Robert Israel's formula. - Antti Karttunen, May 25 2017
Formula
a(1) = 1; a(n) = 1 if n is prime, otherwise a(n) = A070824(n).
a(1) = 1; a(n) = 1 if n is prime, otherwise a(n) = A032741(n) - 1.
a(n) = max(1, A000005(n)-2). - Robert Israel, Jan 20 2016
Comments