A264596 Let S_n be the list of the first n nonnegative numbers written in binary, with least significant bits on the left, and sorted into lexicographic order; a(n) = position of n in S_n, starting indexing at 0.
0, 1, 1, 3, 1, 4, 3, 7, 1, 6, 4, 10, 3, 10, 7, 15, 1, 10, 6, 16, 4, 15, 10, 22, 3, 16, 10, 24, 7, 22, 15, 31, 1, 18, 10, 28, 6, 25, 16, 36, 4, 25, 15, 37, 10, 33, 22, 46, 3, 28, 16, 42, 10, 37, 24, 52, 7, 36, 22, 52, 15, 46, 31, 63, 1, 34, 18, 52, 10, 45, 28
Offset: 0
Examples
S_0 = [0], a(0) = 0; S_1 = [0, 1], a(1) = 1; S_2 = [0, 01, 1], a(2) = 1; S_3 = [0, 01, 1, 11], a(3) = 3; S_4 = [0, 001, 01, 1, 11], a(4) = 1; S_5 = [0, 001, 01, 1, 101, 11], a(5) = 4; S_6 = [0, 001, 01, 011, 1, 101, 11], a(6) = 3; S_7 = [0, 001, 01, 011, 1, 101, 11, 111], a(7) = 7; S_8 = [0, 0001, 001, 01, 011, 1, 101, 11, 111], a(8) = 1; ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..20000
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 0, `if`(irem(n, 2, 'r')=0, a(r), a(r)+r+1)) end: seq(a(n), n=0..100); # Alois P. Heinz, Nov 19 2015
-
Mathematica
A264596[0]=0;A264596[n_]:=A264596[n]=A264596[Floor[n/2]]+Boole[OddQ[n]](Floor[n/2]+1);Array[A264596,100,0] (* Paolo Xausa, Nov 04 2023, after Alois P. Heinz *)
-
Python
def A264596(n): return sorted(format(i,'b')[::-1] for i in range(n+1)).index(format(n,'b')[::-1]) # Chai Wah Wu, Nov 22 2015
Formula
a(2^n) = 1.
a(2^n-1) = 2^n-1.
a(2n) = a(n), a(2n+1) = a(n) + n+1, a(0) = 0. - Alois P. Heinz, Nov 19 2015
Extensions
More terms from Alois P. Heinz, Nov 19 2015