cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264608 Degeneracies of entanglement witness eigenstates for spin 3 particles.

Original entry on oeis.org

1, 0, 1, 1, 7, 31, 175, 981, 5719, 33922, 204687, 1251460, 7737807, 48297536, 303922983, 1926038492, 12281450455, 78741558512, 507301771543, 3282586312161, 21323849229781, 139012437340660, 909161626641121, 5963576112550771, 39223341189188339, 258619428254117476, 1709124801693650075
Offset: 0

Views

Author

N. J. A. Sloane, Nov 24 2015

Keywords

Examples

			A(x) = 1 + x^2 + x^3 + 7*x^4 + 31*x^5 + 175*x^6 + 981*x^7 + ...
		

Crossrefs

For spin S = 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2, 5 we get A000108, A005043, A264607, A007043, A272391, this sequence, A272392, A272393, A272394, A272395.
Cf. A348210 (column k=3).

Programs

  • Mathematica
    a[n_]:= 2/Pi*Integrate[Sqrt[(1-t)/t]*(64t^3-80t^2+24t-1)^n, {t, 0, 1}] (* Thomas Curtright, Jun 23 2016 *)
    a[n_]:= c[0, n, 3]-c[1, n, 3]; c[j_, n_, s_]:= Sum[(-1)^k*Binomial[n, k]*Binomial[j - (2*s + 1)*k + n + n*s - 1, j - (2*s + 1)*k + n*s], {k, 0, Floor[(j + n*s)/(2*s + 1)]}]; Table[a[n], {n, 0, 20}] (* Thomas Curtright, Jul 26 2016 *)
    a[n_]:= mult[0, n, 3]; mult[j_,n_,s_]:=Sum[(-1)^(k+1)*Binomial[n,k]*Binomial[n*s+j-(2*s+1)*k+n- 1,n*s+j-(2*s+1)*k+1],{k,0,Floor[(n*s+j+1)/(2*s+1)]}] (* Thomas Curtright, Jun 14 2017 *)
  • PARI
    N = 26; S = 3;
    M = matrix(N+1, N*numerator(S)+1);
    Mget(n, j) =  { M[1 + n, 1 + j*denominator(S)] };
    Mset(n, j, v) = { M[1 + n, 1 + j*denominator(S)] = v };
    Minit() = {
      my(step = 1/denominator(S));
      Mset(0, 0, 1);
      for (n = 1, N, forstep (j = 0, n*S, step,
         my(acc = 0);
         for (k = abs(j-S), min(j+S, (n-1)*S), acc += Mget(n-1, k));
         Mset(n, j, acc)));
    };
    Minit();
    vector(1 + N\denominator(S), n, Mget((n-1)*denominator(S),0)) \\ Gheorghe Coserea, Apr 28 2016
    
  • PARI
    seq(N) = {
      my(a = vector(N), s); a[2]=1; a[3]=1; a[4]=7; a[5]=31;
      for (n=6, N, s = ((n-1)*(2*n - 5)*(2*n - 1)*(3*n - 4)*(4*n - 3)*(37*n - 38)*a[n-1] + 7*(n-1)*(2*n - 3)*(3*n - 1)*(92*n^3 - 404*n^2 + 509*n - 150)*a[n-2] - 49*(n-2)*(n-1)*(2*n - 5)*(2*n - 1)*(3*n - 4)*(4*n - 3)*a[n-3] - 343*(n-3)*(n-2)*(n-1)*(2*n - 3)*(2*n - 1)*(3*n - 1)*a[n-4]);
        a[n] = s/(3*n*(2*n - 5)*(2*n - 3)*(3*n - 4)*(3*n - 1)*(3*n + 1)));
      concat(1,a);
    };
    seq(26) \\ Gheorghe Coserea, Aug 07 2018

Formula

a(n) ~ (1/8^(3/2))*7^n/(sqrt(Pi)*n^(3/2)) * (1-27/(32*n)+O(1/n^2)). - Thomas Curtright, Jun 17 2016, updated Jul 26 2016
D-finite with recurrence 3*n*(2*n - 5)*(2*n - 3)*(3*n - 4)*(3*n - 1)*(3*n + 1)*a(n) = (n-1)*(2*n - 5)*(2*n - 1)*(3*n - 4)*(4*n - 3)*(37*n - 38)*a(n-1) + 7*(n-1)*(2*n - 3)*(3*n - 1)*(92*n^3 - 404*n^2 + 509*n - 150)*a(n-2) - 49*(n-2)*(n-1)*(2*n - 5)*(2*n - 1)*(3*n - 4)*(4*n - 3)*a(n-3) - 343*(n-3)*(n-2)*(n-1)*(2*n - 3)*(2*n - 1)*(3*n - 1)*a(n-4). - Vaclav Kotesovec, Jun 24 2016
a(n) = (1/Pi)*int((sin(7x)/sin(x))^n*(sin(x))^2,x,0,2Pi). - Thomas Curtright, Jun 24 2016
From Gheorghe Coserea, Aug 07 2018: (Start)
G.f. y=A(x) satisfies:
0 = x^3*(x + 1)^4*(49*x^2 - 14*x - 27)^2*y^8 + 2*x^3*(x + 1)^3*(35*x + 23)*(49*x^2 - 14*x - 27)*y^6 + x^2*(x + 1)^2*(1421*x^3 + 1652*x^2 + 393*x - 54)*y^4 + x*(x + 1)*(147*x^3 + 175*x^2 + 51*x - 1)*y^2 + x*(2*x + 1)^2.
0 = x^2*(x + 1)*(7*x - 1)*(7*x + 1)*(49*x^2 - 70*x + 5)*(49*x^2 - 14*x - 27)*y''' + x*(1058841*x^7 - 1092455*x^6 - 1212505*x^5 + 627347*x^4 + 222999*x^3 - 6657*x^2 - 5015*x + 405)*y'' + 2*(1058841*x^7 - 1428595*x^6 - 725102*x^5 + 224322*x^4 + 24157*x^3 + 6909*x^2 - 720*x + 60)*y' + 14*x*(50421*x^5 - 84035*x^4 - 19894*x^3 - 2058*x^2 + 665*x - 75)*y.
(End)

Extensions

More terms from Gheorghe Coserea, Apr 28 2016