cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A264656 Number of n X 1 arrays of permutations of 0..n*1-1 with rows nondecreasing modulo 2 and columns nondecreasing modulo 5.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 96, 288, 864, 2592, 7776, 31104, 124416, 497664, 1990656, 7962624, 39813120, 199065600, 995328000, 4976640000, 24883200000, 149299200000, 895795200000, 5374771200000, 32248627200000, 193491763200000, 1354442342400000
Offset: 1

Views

Author

R. H. Hardin, Nov 20 2015

Keywords

Comments

Column 1 of A264659.

Examples

			All solutions for n=8
..5....0....0....5....5....5....0....0
..0....5....5....0....0....0....5....5
..1....6....6....6....6....1....1....1
..6....1....1....1....1....6....6....6
..7....7....2....2....7....2....7....2
..2....2....7....7....2....7....2....7
..3....3....3....3....3....3....3....3
..4....4....4....4....4....4....4....4
		

Crossrefs

Cf. A264659.
Column k=5 of A275062.

Programs

  • Mathematica
    Table[Product[Floor[(n + i)/5]!, {i, 0, 4}], {n, 1, 30}] (* Vaclav Kotesovec, Oct 02 2018 *)

Formula

a(n) = Product_{i=0..4} floor((n+i)/5)!. - Alois P. Heinz, Jul 12 2016
a(n) ~ (2*Pi*n)^2 * n! / 5^(n + 5/2). - Vaclav Kotesovec, Oct 02 2018

A264657 Number of nX2 arrays of permutations of 0..n*2-1 with rows nondecreasing modulo 2 and columns nondecreasing modulo 5.

Original entry on oeis.org

1, 3, 8, 38, 223, 2412, 26400, 371328, 5636096, 92242944, 2278149120, 57145347072, 1607327566848, 49562666560512
Offset: 1

Views

Author

R. H. Hardin, Nov 20 2015

Keywords

Comments

Column 2 of A264659.

Examples

			Some solutions for n=5
..0..5....5..1....6..5....0..1....0..5....6..0....0..5....0..2....6..5....5..7
..2..1....0..6....2..0....5..7....1..7....1..5....6..8....5..7....8..0....0..8
..8..6....3..7....7..1....6..2....6..3....7..3....1..3....1..3....3..1....1..3
..9..7....8..2....8..4....4..8....2..8....2..8....2..4....6..8....9..7....6..4
..4..3....4..9....3..9....9..3....4..9....4..9....7..9....4..9....4..2....2..9
		

Crossrefs

Cf. A264659.

A264658 Number of nX3 arrays of permutations of 0..n*3-1 with rows nondecreasing modulo 2 and columns nondecreasing modulo 5.

Original entry on oeis.org

2, 16, 314, 8944, 437568, 31791360, 3066123264
Offset: 1

Views

Author

R. H. Hardin, Nov 20 2015

Keywords

Comments

Column 3 of A264659.

Examples

			Some solutions for n=5
..0..5..1....0..7..5....0.11..5....0.11..5....0..1..5....0..2..6....0..2..5
.10..6.11...10.12.11...10.12..1...10..6.13...10..6.12...10.12.11...10.12.11
.12..2..7....6.14..8....8..2..6....7..1..3...11..7..3....5..7.13....6..3..7
.13..3..9....1..9..3....9..3..7...12..2..8....2..9.13....1..3..9....1..9.13
.14..8..4....2..4.13...14..4.13...14..4..9....8..4.14...14..8..4....8..4.14
		

Crossrefs

Cf. A264659.

A264660 Number of 2Xn arrays of permutations of 0..n*2-1 with rows nondecreasing modulo 2 and columns nondecreasing modulo 5.

Original entry on oeis.org

1, 3, 16, 148, 2400, 62800, 2150784, 89051520, 4376959488, 264110948352
Offset: 1

Views

Author

R. H. Hardin, Nov 20 2015

Keywords

Comments

Row 2 of A264659.

Examples

			Some solutions for n=5
..2..0..6..5..1....0..7..9..1..5....0..8..1..7..5....2..0..5..3..1
..8..4..3..9..7....2..8..4..6..3....2..4..6..3..9....4..6..8..9..7
		

Crossrefs

Cf. A264659.

A264661 Number of 3Xn arrays of permutations of 0..n*3-1 with rows nondecreasing modulo 2 and columns nondecreasing modulo 5.

Original entry on oeis.org

1, 8, 314, 20940, 3084352, 726042624, 284038382592
Offset: 1

Views

Author

R. H. Hardin, Nov 20 2015

Keywords

Comments

Row 3 of A264659.

Examples

			Some solutions for n=5
..0..2.10..6..5....0.12..6..2.10....0.10..6..1..7....0.10..7..5..1
..8..7.11..3..1....8..7.11.13..5....8..5.11..9.13....4..2.12..6.11
.14.12..4..9.13....4.14..1..9..3....4.12..2.14..3...14..8.13..9..3
		

Crossrefs

Cf. A264659.
Showing 1-5 of 5 results.