cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264662 Triangle read by rows: row n contains the first n primes in lexicographical order of their mirrored binary representation.

Original entry on oeis.org

2, 2, 3, 2, 5, 3, 2, 5, 3, 7, 2, 5, 3, 11, 7, 2, 5, 13, 3, 11, 7, 2, 17, 5, 13, 3, 11, 7, 2, 17, 5, 13, 3, 19, 11, 7, 2, 17, 5, 13, 3, 19, 11, 7, 23, 2, 17, 5, 13, 29, 3, 19, 11, 7, 23, 2, 17, 5, 13, 29, 3, 19, 11, 7, 23, 31, 2, 17, 5, 37, 13, 29, 3, 19, 11
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 20 2015

Keywords

Comments

T(n,A263856(n)) = A000040(n): A263856(n) = index of prime(n) in n-th row.

Examples

			.   n |   T(n,k), k=1..n
. ----+-----------------------------------------------------------------
.   1 | 2                          01
.   2 | 2  3                       01 11
.   3 | 2  5  3                    01 101   11
.   4 | 2  5  3  7                 01 101   11   111
.   5 | 2  5  3 11  7              01 101   11   1101 111
.   6 | 2  5 13  3 11  7           01 101   1011 11   1101 111
.   7 | 2 17  5 13  3 11  7        01 10001 101  1011 11   1101  111
.   8 | 2 17  5 13  3 19 11  7     01 10001 101  1011 11   11001 1101 111
.   9 | 2 17  5 13  3 19 11  7 23
.  10 | 2 17  5 13 29  3 19 11  7 23
.  11 | 2 17  5 13 29  3 19 11  7 23 31
.  12 | 2 17  5 37 13 29  3 19 11  7 23 31
.  13 | 2 17 41  5 37 13 29  3 19 11  7 23 31
.  14 | 2 17 41  5 37 13 29  3 19 11 43 7  23 31
.  15 | 2 17 41  5 37 13 29  3 19 11 43  7 23 47 31
.  16 | 2 17 41  5 37 53 13 29  3 19 11 43  7 23 47 31
.  17 | 2 17 41  5 37 53 13 29  3 19 11 43 59  7 23 47 31
.  18 | 2 17 41  5 37 53 13 29 61  3 19 11 43 59  7 23 47 31
.  19 | 2 17 41  5 37 53 13 29 61  3 67 19 11 43 59  7 23 47 31
.  20 | 2 17 41  5 37 53 13 29 61  3 67 19 11 43 59  7 71 23 47 31
		

Crossrefs

Cf. A263846, A000040, A007088, A007504 (row sums), A264666 (partial row products), A037126 (rows sorted naturally).

Programs

  • Haskell
    import Data.List (inits, sortBy); import Data.Function (on)
    a264662 n k = a264662_tabl !! (n-1) !! (n-1)
    a264662_row n = a264662_tabl !! (n-1)
    a264662_tabl = map (sortBy (compare `on` (reverse . show . a007088))) $
                       tail $ inits a000040_list
  • Mathematica
    row[n_] := SortBy[Prime[Range[n]], StringJoin[ToString /@ Reverse[IntegerDigits[#, 2]]]&];
    Table[row[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Sep 25 2021 *)