A264662 Triangle read by rows: row n contains the first n primes in lexicographical order of their mirrored binary representation.
2, 2, 3, 2, 5, 3, 2, 5, 3, 7, 2, 5, 3, 11, 7, 2, 5, 13, 3, 11, 7, 2, 17, 5, 13, 3, 11, 7, 2, 17, 5, 13, 3, 19, 11, 7, 2, 17, 5, 13, 3, 19, 11, 7, 23, 2, 17, 5, 13, 29, 3, 19, 11, 7, 23, 2, 17, 5, 13, 29, 3, 19, 11, 7, 23, 31, 2, 17, 5, 37, 13, 29, 3, 19, 11
Offset: 1
Examples
. n | T(n,k), k=1..n . ----+----------------------------------------------------------------- . 1 | 2 01 . 2 | 2 3 01 11 . 3 | 2 5 3 01 101 11 . 4 | 2 5 3 7 01 101 11 111 . 5 | 2 5 3 11 7 01 101 11 1101 111 . 6 | 2 5 13 3 11 7 01 101 1011 11 1101 111 . 7 | 2 17 5 13 3 11 7 01 10001 101 1011 11 1101 111 . 8 | 2 17 5 13 3 19 11 7 01 10001 101 1011 11 11001 1101 111 . 9 | 2 17 5 13 3 19 11 7 23 . 10 | 2 17 5 13 29 3 19 11 7 23 . 11 | 2 17 5 13 29 3 19 11 7 23 31 . 12 | 2 17 5 37 13 29 3 19 11 7 23 31 . 13 | 2 17 41 5 37 13 29 3 19 11 7 23 31 . 14 | 2 17 41 5 37 13 29 3 19 11 43 7 23 31 . 15 | 2 17 41 5 37 13 29 3 19 11 43 7 23 47 31 . 16 | 2 17 41 5 37 53 13 29 3 19 11 43 7 23 47 31 . 17 | 2 17 41 5 37 53 13 29 3 19 11 43 59 7 23 47 31 . 18 | 2 17 41 5 37 53 13 29 61 3 19 11 43 59 7 23 47 31 . 19 | 2 17 41 5 37 53 13 29 61 3 67 19 11 43 59 7 23 47 31 . 20 | 2 17 41 5 37 53 13 29 61 3 67 19 11 43 59 7 71 23 47 31
Links
- Reinhard Zumkeller, Rows n = 1..250 of triangle, flattened
Crossrefs
Programs
-
Haskell
import Data.List (inits, sortBy); import Data.Function (on) a264662 n k = a264662_tabl !! (n-1) !! (n-1) a264662_row n = a264662_tabl !! (n-1) a264662_tabl = map (sortBy (compare `on` (reverse . show . a007088))) $ tail $ inits a000040_list
-
Mathematica
row[n_] := SortBy[Prime[Range[n]], StringJoin[ToString /@ Reverse[IntegerDigits[#, 2]]]&]; Table[row[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Sep 25 2021 *)
Comments