A264732 Löschian numbers (A003136) which are the sum of 2 nonzero squares.
13, 25, 37, 52, 61, 73, 97, 100, 109, 117, 148, 157, 169, 181, 193, 208, 225, 229, 241, 244, 277, 289, 292, 313, 325, 333, 337, 349, 373, 388, 397, 400, 409, 421, 433, 436, 457, 468, 481, 541, 549, 577, 592, 601, 613, 625, 628, 637, 657, 661, 673, 676, 709, 724, 733
Offset: 1
Keywords
Examples
a(1) = 13 because 13 = 3^2 + 3*1 + 1^2 = 3^2 + 2^2. a(2) = 25 because 25 = 5^2 + 5*0 + 0^2 = 4^2 + 3^2. a(3) = 37 because 37 = 4^2 + 4*3 + 3^2 = 6^2 + 1^2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range@750, Length[PowersRepresentations[#, 2, 2] /. {0, }->Nothing]>0 && Reduce[#==x^2+x*y+y^2, {x, y}, Integers]=!=False &] (* _Frank M Jackson, Oct 13 2019 *)
-
PARI
isok(n) = { for( i=1, #n=factor(n)~%4, n[1, i]==3 && n[2, i]%2 && return); n && ( vecmin(n[1, ])==1 || (n[1, 1]==2 && n[2, 1]%2))} is(n) = #bnfisintnorm(bnfinit(z^2+z+1), n); for(n=1, 1e3, if( is(n) && isok(n), print1(n, ", ")))
Comments