A068228 Primes congruent to 1 (mod 12).
13, 37, 61, 73, 97, 109, 157, 181, 193, 229, 241, 277, 313, 337, 349, 373, 397, 409, 421, 433, 457, 541, 577, 601, 613, 661, 673, 709, 733, 757, 769, 829, 853, 877, 937, 997, 1009, 1021, 1033, 1069, 1093, 1117, 1129, 1153, 1201, 1213, 1237, 1249, 1297
Offset: 1
References
- Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
- David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- William C. Jagy and Irving Kaplansky, Positive definite binary quadratic forms that represent the same primes [Cached copy, with permission]
- Michael Penn, an example right from my number theory class., YouTube video, 2021.
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
- J. B. Tunnell, Proofs of Conjectures Concerning Entry A033212, the Sequence of Primes Congruent to 1 or 19 (mod 30)
- J. Voight, Quadratic forms that represent almost the same primes, Math. Comp., Vol. 76 (2007), pp. 1589-1617.
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
Crossrefs
Cf. A068227, A068229, A040117, A068231, A068232, A068233, A068234, A068235, A139643, A141122, A140633, A264732.
Subsequence of A084916.
Subsequence of A007645.
Cf. A141123 (d=12), A141111, A141112 (d=65), A141187 (d=48) A038872 (d=5), A038873 (d=8), A038883 (d=13), A038889 (d=17).
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Programs
-
Magma
[p: p in PrimesUpTo(1400) | p mod 12 in {1}]; // Vincenzo Librandi, Jul 14 2012 For other programs see the "Binary Quadratic Forms and OEIS" link.
-
Maple
select(isprime, [seq(i,i=1..10000, 12)]); # Robert Israel, Nov 27 2015
-
Mathematica
Select[Prime/@Range[250], Mod[ #, 12]==1&] Select[Range[13, 10^4, 12], PrimeQ] (* Zak Seidov, Mar 21 2011 *)
-
PARI
for(i=1,250, if(prime(i)%12==1, print(prime(i))))
-
PARI
forstep(p=13,10^4,12,isprime(p)&print(p)); \\ Zak Seidov, Mar 21 2011
Extensions
Edited by Dean Hickerson, Feb 27 2002
Entry revised by N. J. A. Sloane, Oct 18 2014 (Edited, merged with A141122, submitted by Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 05 2008).
Comments