cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264737 Primes which divide some term of A000085 (numbers of involutions).

Original entry on oeis.org

2, 5, 13, 19, 23, 29, 31, 43, 53, 59, 61, 67, 73, 79, 83, 89, 97, 103, 131, 137, 151, 157, 163, 173, 179, 181, 191, 197, 199, 211, 229, 233, 239, 241, 281, 293, 307, 317, 347, 359, 367, 373, 379, 389, 397, 409, 419, 421, 431, 433, 443, 449, 457, 461, 463, 479, 487, 491, 499
Offset: 1

Views

Author

David Eppstein, Nov 22 2015

Keywords

Comments

Essentially the same as A245177. - R. J. Mathar, Nov 25 2015

Examples

			23 divides A000085(11) = 35696 = 2^4 * 23 * 97, so it appears in this set. The sequence A000085 mod 3 cycles: 1,1,2,1,1,2,..., so the prime factor 3 does not appear in this set.
		

Crossrefs

Cf. A000085. Essentially a duplicate of A245177.

Programs

  • Maple
    filter:= proc(p) local a,b,c,n,R;
      if not isprime(p) then return false fi;
      a:= 1; b:= 1;
      R[1,1,1]:= 1;
      for n from 2 do
        c:= a + (n-1)*b mod p;
        if c = 0 then return true fi;
        b:= a; a:= c;
        if R[a,b,(n mod p)] = 1 then return false fi;
        R[a,b,(n mod p)]:= 1;
      od:
    end proc:
    select(filter, [2,seq(i,i=3..1000,2)]); # Robert Israel, Nov 22 2015
  • Mathematica
    A85 = DifferenceRoot[Function[{y, n}, {(-n - 1) y[n] - y[n + 1] + y[n + 2] == 0, y[1] == 1, y[2] == 2}]];
    selQ[p_] := AnyTrue[Range[p - 1], Divisible[A85[#], p]&]; selQ[2] = True;
    Reap[For[p = 2, p < 1000, p = NextPrime[p], If[selQ[p], Print[p]; Sow[p] ]]][[2, 1]] (* Jean-François Alcover, Jul 28 2020 *)

Formula

Any individual prime p is easily tested for membership in this set by iterating the recurrence for A000085 mod p, T(n) = T(n-1) + (n-1)T(n-2) modulo p, until either finding a value divisible by p or entering a cycle.