A264737 Primes which divide some term of A000085 (numbers of involutions).
2, 5, 13, 19, 23, 29, 31, 43, 53, 59, 61, 67, 73, 79, 83, 89, 97, 103, 131, 137, 151, 157, 163, 173, 179, 181, 191, 197, 199, 211, 229, 233, 239, 241, 281, 293, 307, 317, 347, 359, 367, 373, 379, 389, 397, 409, 419, 421, 431, 433, 443, 449, 457, 461, 463, 479, 487, 491, 499
Offset: 1
Examples
23 divides A000085(11) = 35696 = 2^4 * 23 * 97, so it appears in this set. The sequence A000085 mod 3 cycles: 1,1,2,1,1,2,..., so the prime factor 3 does not appear in this set.
Links
- Robert Israel, Table of n, a(n) for n = 1..4000
Programs
-
Maple
filter:= proc(p) local a,b,c,n,R; if not isprime(p) then return false fi; a:= 1; b:= 1; R[1,1,1]:= 1; for n from 2 do c:= a + (n-1)*b mod p; if c = 0 then return true fi; b:= a; a:= c; if R[a,b,(n mod p)] = 1 then return false fi; R[a,b,(n mod p)]:= 1; od: end proc: select(filter, [2,seq(i,i=3..1000,2)]); # Robert Israel, Nov 22 2015
-
Mathematica
A85 = DifferenceRoot[Function[{y, n}, {(-n - 1) y[n] - y[n + 1] + y[n + 2] == 0, y[1] == 1, y[2] == 2}]]; selQ[p_] := AnyTrue[Range[p - 1], Divisible[A85[#], p]&]; selQ[2] = True; Reap[For[p = 2, p < 1000, p = NextPrime[p], If[selQ[p], Print[p]; Sow[p] ]]][[2, 1]] (* Jean-François Alcover, Jul 28 2020 *)
Formula
Any individual prime p is easily tested for membership in this set by iterating the recurrence for A000085 mod p, T(n) = T(n-1) + (n-1)T(n-2) modulo p, until either finding a value divisible by p or entering a cycle.
Comments