cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264745 Rectangular array A read by upward antidiagonals in which the entry in row n and column k is defined by A(n,k) = Fibonacci(2^(n-1)*(2*k-1) + 1), n,k >= 1.

Original entry on oeis.org

1, 2, 3, 5, 13, 8, 34, 233, 89, 21, 1597, 75025, 10946, 610, 55, 3524578, 7778742049, 165580141, 514229, 4181, 144, 17167680177565, 83621143489848422977, 37889062373143906, 365435296162, 24157817, 28657, 377, 407305795904080553832073954
Offset: 1

Views

Author

L. Edson Jeffery, Nov 23 2015

Keywords

Comments

The array exhausts, without duplication, the subsequence of A000045 obtained by removing the first two terms {0,1}.

Examples

			The array begins:
.     1           3                  8                        21
.     2          13                 89                       610
.     5         233              10946                    514229
.    34       75025          165580141              365435296162
.  1597  7778742049  37889062373143906  184551825793033096366333
		

Crossrefs

Cf. A001906, A033891 (rows 1--2).
Cf. A192222 (column 1).

Programs

  • Mathematica
    (* Array: *)
    Grid[Table[Fibonacci[2^(n - 1)*(2 k - 1) + 1], {n, 5}, {k, 4}]]
    (* Array antidiagonal flattened: *)
    Flatten[Table[Fibonacci[2^(n - k)*(2 k - 1) + 1], {n, 7}, {k, n}]]

Formula

A(n,k) = A000045(A054582(n-1,k-1) + 1).
A(A001511(m),A003602(m)) = A000045(m+1), m >= 1.
Conjectured g.f. for row n: x*(A000045(2^(n-1)+1) - A000045(2^(n-1)-1)*x)/(1 - A001566(n)*x + x^2), n >= 1.