cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264757 An eventually quasi-quadratic solution to Hofstadter's Q recurrence.

Original entry on oeis.org

4, 0, 5, 6, 2, 6, 6, 3, 11, 6, 2, 12, 6, 3, 23, 6, 2, 18, 6, 3, 41, 6, 2, 24, 6, 3, 65, 6, 2, 30, 6, 3, 95, 6, 2, 36, 6, 3, 131, 6, 2, 42, 6, 3, 173, 6, 2, 48, 6, 3, 221, 6, 2, 54, 6, 3, 275, 6, 2, 60, 6, 3, 335, 6, 2, 66, 6, 3, 401, 6, 2, 72, 6, 3, 473, 6
Offset: 1

Views

Author

Nathan Fox, Nov 23 2015

Keywords

Comments

a(n) is the solution to the recurrence relation a(n) = a(n-a(n-1)) + a(n-a(n-2)) [Hofstadter's Q recurrence], with the initial conditions: a(n) = 0 if n <= 0; a(1) = 4, a(2) = 0, a(3) = 5, a(4) = 6, a(5) = 2, a(6) = 6, a(7) = 6, a(8) = 3.

Crossrefs

Programs

  • Mathematica
    Table[If[n < 3, # - n - 1, #] &@ Switch[Mod[n, 6], 0, n, 1, 6, 2, 3, 3, 3 #^2 + 3 # + 5 &[(n - 3)/6], 4, 6, 5, 2], {n, 75}] (* or *)
    Rest@ CoefficientList[Series[x (4 + 5 x^2 + 6 x^3 + 2 x^4 + 6 x^5 - 6 x^6 + 3 x^7 - 4 x^8 - 12 x^9 - 4 x^10 - 6 x^11 - 6 x^13 + 5 x^14 + 6 x^15 + 2 x^16 + 2 x^18 + 3 x^19)/((1 - x)^3*(1 + x)^3*(1 - x + x^2)^3*(1 + x + x^2)^3), {x, 0, 76}], x] (* Michael De Vlieger, Nov 14 2016 *)
  • PARI
    Vec(x*(4+5*x^2+6*x^3+2*x^4+6*x^5-6*x^6+3*x^7-4*x^8-12*x^9-4*x^10-6*x^11-6*x^13+5*x^14+6*x^15+2*x^16+2*x^18+3*x^19)/((1-x)^3*(1+x)^3*(1-x+x^2)^3*(1+x+x^2)^3) + O(x^100)) \\ Colin Barker, Nov 14 2016

Formula

a(1) = 4, a(2) = 0; thereafter a(6*n) = 6*n, a(6*n+1) = 6, a(6*n+2) = 3, a(6*n+3) = 3*n^2+3*n+5, a(6*n+4) = 6, a(6*n+5) = 2.
From Colin Barker, Nov 14 2016: (Start)
G.f.: x*(4 + 5*x^2 + 6*x^3 + 2*x^4 + 6*x^5 - 6*x^6 + 3*x^7 - 4*x^8 - 12*x^9 - 4*x^10 - 6*x^11 - 6*x^13 + 5*x^14 + 6*x^15 + 2*x^16 + 2*x^18 + 3*x^19) / ((1 - x)^3 * (1 + x)^3 * (1 - x + x^2)^3 * (1 + x + x^2)^3).
a(n) = 3*a(n-6) - 3*a(n-12) + a(n-18) for n>20.
(End)