A264770 a(1) = 1, a(n) = smallest positive number not yet in the sequence such that the concatenation of a(n-1) and a(n) is a square.
1, 6, 4, 9, 61, 504, 100, 489, 2944, 656, 3844, 34449, 85636, 516, 961, 6201, 5625, 43524, 36729, 7225, 344, 569, 2996, 361, 201, 64, 1601, 6004, 7001, 316, 84, 681, 21, 16, 81, 225, 625, 5001, 3184, 3449, 2129, 8225, 424, 36, 481, 636, 804, 609, 1024, 144
Offset: 1
Examples
For n = 6, a(n-1) = 61. There are no squares of the form 61x or 61xy with x>=1. The least square of the form 61xyz with x >= 1 is 61504, and 504 has not appeared previously so a(6) = 504.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
S:= {1}; A[1]:= 1; for n from 2 to 100 do found:= false; x:= A[n-1]; for d from 1 while not found do a:= ceil(sqrt(10^d*x +10^(d-1))); b:= floor(sqrt(10^d*x + 10^d - 1)); Q:= map(t -> t^2 - 10^d*x, {$a..b}) minus S; if nops(Q) >= 1 then A[n]:= min(Q); S:= S union {A[n]}; found:= true; fi od od: seq(A[n],n=1..100);
-
Mathematica
(*to get B numbers of the sequence*) A={1};i=1;While[iEmmanuel Vantieghem, Nov 24 2015 *)
-
PARI
A264770(n,show=0,a=1,u=[])={for(n=2, n, u=setunion(u,[a]); show&&print1(a", "); my(k=3); until(!setsearch(u, k++) && issquare(eval(Str(a,k))),);a=k); a} \\ Use optional 2nd, 3rd or 4th argument to print intermediate terms, use another starting value, or exclude some numbers. - M. F. Hasler, Nov 24 2015
Comments