A264801 Number of essentially different seating arrangements for 2n couples around a circular table with 4n seats such that no spouses are neighbors, the neighbors of each person have opposite gender and no person's neighbors belong to the same couple.
0, 6, 2400, 6375600, 45927907200, 713518388352000, 21216194909362252800, 1105729617210350356224000, 94398452626533646953922560000, 12514511465855205467497303154688000, 2467490887755897725667792936979169280000, 698323914872709997998407130752506728284160000
Offset: 1
Keywords
Examples
a(1)=0 because with 2 couples it is impossible to satisfy all three conditions. a(2)=6 because only the following arrangements are possible with 4 couples: ABdaCDbc, ABcaDCbd, ACdaBDcb, ACbaDBcd, ADcaBCdb, ADbaCBdc. This corresponds to the (2*2-1)! possibilities for persons B, C and D to choose a seat. After the positions of A, B, C and D are fixed, only A000183(2*2)=1 possibility remains to arrange their spouses a, b, c and d.
Programs
-
PARI
a000183(N)={my(a0=[0,0,0,1,2,20],a=vector(N), f(x)=fibonacci(x-1)+fibonacci(x+1)+2;); if(N<7,a=a0[1..N],for(k=1,6,a[k]=a0[k]); for(n=7,N,a[n] = (-1)^n*(4*n+f(n)) + (n/(n-1))*((n+1)*a[n-1] + 2*(-1)^n*f(n-1)) - ((2*n)/(n-2))*((n-3)*a[n-2] + (-1)^n*f(n-2)) + (n/(n-3))*((n-5)*a[n-3] + 2*(-1)^(n-1)*f(n-3)) + (n/(n-4))*(a[n-4] + (-1)^(n-1)*f(n-4))));a}; a264901(limit)={my(a183=a000183(2*limit)); for(n=1,limit,print1((2*n-1)!*a183[2*n],", "))}; a264901(12) \\ Hugo Pfoertner, Sep 05 2020
Formula
a(n) = (2*n-1)! * A000183(2*n).
Comments