cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264814 Numbers k such that concatenate(k,k+1,k) is prime.

Original entry on oeis.org

7, 9, 11, 13, 33, 37, 39, 41, 47, 57, 59, 61, 69, 71, 77, 79, 81, 83, 101, 103, 129, 149, 181, 187, 189, 191, 193, 207, 217, 229, 231, 241, 289, 291, 299, 301, 303, 307, 317, 333, 347, 359, 373, 377, 383, 387, 409, 439, 451, 467, 473, 487, 489, 509, 517, 527
Offset: 1

Views

Author

M. F. Hasler, Nov 25 2015

Keywords

Comments

Motivated by sequence A068660 which lists these primes.

Examples

			11 is in the sequence because 111211 is prime.
13 is in the sequence because 131413 is prime.
15 is not in the sequence because 151615 = 5 * 30323.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..700] | IsPrime(Seqint(Intseq(n) cat Intseq(n+1) cat Intseq(n)))]; // Vincenzo Librandi, Nov 30 2015
    
  • Mathematica
    Select[Range[800], PrimeQ[FromDigits[Join[IntegerDigits[#], IntegerDigits[# + 1], IntegerDigits[#]]]] &] (* Alonso del Arte, Nov 25 2015 *)
  • PARI
    is(n)=isprime(eval(Str(n,n+1,n)))
    
  • Python
    from sympy import isprime
    def aupto(N):
      return [k for k in range(1, N+1, 2) if isprime(int(str(k)+str(k+1)+str(k)))]
    print(aupto(530)) # Michael S. Branicky, Jul 09 2021