A264826 Primitive Eisenstein triples: (a,b,c) in lexicographic order such that a^2 + b^2 - a*b - c^2 = 0, a < b < c, and gcd(a, b) = 1.
3, 7, 8, 5, 7, 8, 5, 19, 21, 7, 13, 15, 7, 37, 40, 8, 13, 15, 9, 61, 65, 11, 31, 35, 11, 91, 96, 13, 43, 48, 13, 127, 133, 15, 169, 176, 16, 19, 21, 16, 49, 55, 17, 73, 80, 17, 217, 225, 19, 91, 99, 19, 271, 280, 21, 331, 341, 23, 133, 143, 23, 397, 408
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..9999
- Eric Weisstein's World of Mathematics, Pythagorean Triple
- Wikipedia, Eisenstein triple
Programs
-
PARI
pt60(a) = { my(L=List(), n=-3*a^2, f, g, b, c); fordiv(n, f, g=n\f; if(f>g && (g+f)%2==0 && (f-g)%4==0, b=(f-g)\4; c=((f+g)\2+a)\2; if(c>0 && a
Comments