A264827 (a,b,c) in lexicographic order such that a^2 + b^2 + a*b - c^2 = 0 with a < b < c and gcd(a, b) = 1.
3, 5, 7, 5, 16, 19, 7, 8, 13, 7, 33, 37, 9, 56, 61, 11, 24, 31, 11, 85, 91, 13, 35, 43, 13, 120, 127, 15, 161, 169, 16, 39, 49, 17, 63, 73, 17, 208, 217, 19, 80, 91, 19, 261, 271, 21, 320, 331, 23, 120, 133, 23, 385, 397, 24, 95, 109, 25, 143, 157
Offset: 1
Examples
Triples (a,b,c) begin: 3, 5, 7; 5, 16, 19; 7, 8, 13; 7, 33, 37; 9, 56, 61; ...
Links
- Colin Barker, Table of n, a(n) for n = 1..9999
- Wikipedia, Eisenstein triple
Programs
-
PARI
pt120(a) = { my(L=List(), n=-3*a^2, f, g, b, c); fordiv(n, f, g=n\f; if(f>g && (g+f)%2==0 && (f-g)%4==0, c=(f-g)\4; b=((f+g)\2-a)\2; if(b>0 && a
Comments