A264866 Primes of the form 2^x + y (x >= 0 and 0 <= y < 2^x) such that all the numbers 2^(x+a) + (y-a) (0 < a <= y) are composite.
2, 3, 5, 11, 13, 17, 19, 23, 41, 71, 131, 149, 257, 277, 523, 1117, 2053, 2161, 2237, 2251, 2999, 4099, 5237, 8233, 8243, 16453, 16553, 32771, 32779, 32783, 32789, 32797, 32801, 32839, 32843, 32917, 33623, 65537, 65539, 65543, 65563, 65599, 65651, 72497, 131129, 131267, 134777, 262147, 262151, 264959
Offset: 1
Keywords
Examples
a(4) = 11 since 11 = 2^3 + 3 is a prime with 3 < 2^3, and 2^4 + 2 = 18, 2^5 + 1 = 33 and 2^6 + 0 = 64 are all composite.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..62
- Zhi-Wei Sun, Write n = k + m with 2^k + m prime, a message to Number Theory List, Nov. 16, 2013.
- Z.-W. Sun, On a^n+ bn modulo m, arXiv:1312.1166 [math.NT], 2013-2014.
- Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014-2015.
Programs
-
Mathematica
p[n_]:=p[n]=Prime[n] x[n_]:=x[n]=Floor[Log[2,p[n]]] y[n_]:=y[n]=p[n]-2^(x[n]) n=0;Do[Do[If[PrimeQ[2^(x[k]+a)+y[k]-a],Goto[aa]],{a,1,y[k]}];n=n+1;Print[n," ",p[k]];Label[aa];Continue,{k,1,23226}]
Comments