A264865 Primes of the form 2^x + y (x >= 0 and 0 <= y < 2^x) such that all the numbers 2^(x-a) + (y+a) (0 < a <= x) are composite.
5, 7, 13, 19, 31, 47, 61, 71, 101, 211, 239, 241, 271, 281, 311, 331, 379, 421, 449, 491, 617, 619, 631, 751, 797, 827, 853, 863, 883, 971, 991, 1009, 1051, 1117, 1171, 1217, 1277, 1291, 1297, 1301, 1321, 1327, 1429, 1453, 1471, 1483, 1487, 1531, 1567, 1607, 1627, 1637, 1667, 1669, 1697, 1709, 1723, 1747, 1801, 1847
Offset: 1
Keywords
Examples
a(1) = 5 since 5 = 2^2 + 1 is a prime with 1 < 2^2, and 2^0 + 3 = 2^1 + 2 = 4 is composite. a(3) = 13 since 13 = 2^3 + 5 is a prime with 5 < 2^3, and 2^0 + 8 = 2^1 + 7 = 9 and 2^2 + 6 = 10 are both composite.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Write n = k + m with 2^k + m prime, a message to Number Theory List, Nov. 16, 2013.
- Z.-W. Sun, On a^n+ bn modulo m, arXiv:1312.1166 [math.NT], 2013-2014.
- Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014-2015.
Programs
-
Mathematica
p[n_]:=p[n]=Prime[n] x[n_]:=x[n]=Floor[Log[2,p[n]]] y[n_]:=y[n]=p[n]-2^(x[n]) n=0;Do[Do[If[PrimeQ[2^(x[k]-a)+y[k]+a],Goto[aa]],{a,1,x[k]}];n=n+1;Print[n," ",p[k]];Label[aa];Continue,{k,1,283}]
Comments