A264870 Triangular array: For n >= 2 and 0 < k <= n - 2, T(n, k) equals the number of (unrooted) duplication trees on n gene segments that are canonical and whose leftmost visible duplication event is (k, r), for 1 <= r <= (n - k)/2.
1, 0, 1, 1, 1, 1, 2, 3, 3, 3, 5, 8, 11, 11, 11, 13, 24, 35, 46, 46, 46, 37, 72, 118, 164, 210, 210, 210, 109, 227, 391, 601, 811, 1021, 1021, 1021, 336, 727, 1328, 2139, 3160, 4181, 5202, 5202, 5202, 1063, 2391, 4530, 7690, 11871, 17073, 22275, 27477, 27477, 27477
Offset: 0
Examples
Triangle begins n\k| 0 1 2 3 4 5 6 7 ---------------------------------------------- .2.| 1 .3.| 0 1 .4.| 1 1 1 .5.| 2 3 3 3 .6.| 5 8 11 11 11 .7.| 13 24 35 46 46 46 .8.| 37 72 118 164 210 210 210 .9.| 109 227 391 601 811 1021 1021 1021 ...
References
- O. Gascuel (Ed.), Mathematics of Evolution and Phylogeny, Oxford University Press, 2005
Links
- O. Gascuel, M. Hendy, A. Jean-Marie and R. McLachlan, The combinatorics of tandem duplication trees, Systematic Biology 52, 110-118, (2003).
- J. Yang and L. Zhang, On Counting Tandem Duplication Trees", Molecular Biology and Evolution, Volume 21, Issue 6, (2004) 1160-1163.
Programs
Formula
T(n,k) = Sum_{j = 0..k+1} T(n-1,j) for n >= 4, 0 <= k <= n - 2, with T(2,0) = T(3,1) = 1, T(3,0) = 0 and T(n,k) = 0 for k >= n - 1.
T(n,k) = T(n,k-1) + T(n-1,k+1) for n >= 4, 1 <= k <= n - 2.
Comments