cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A264918 Decimal expansion of constant z = Sum_{n>=1} {(3/2)^n} / 2^n, where {x} denotes the fractional part of x.

Original entry on oeis.org

3, 9, 3, 1, 8, 8, 4, 7, 7, 0, 4, 9, 6, 4, 4, 3, 2, 4, 4, 9, 7, 2, 5, 8, 2, 1, 3, 1, 3, 8, 9, 0, 3, 8, 8, 5, 8, 5, 4, 8, 3, 9, 1, 4, 0, 7, 8, 8, 6, 6, 2, 8, 6, 9, 5, 3, 9, 2, 9, 3, 2, 4, 7, 5, 7, 5, 7, 8, 7, 7, 5, 8, 3, 3, 8, 9, 7, 4, 9, 8, 6, 6, 8, 1, 0, 9, 7, 6, 6, 6, 2, 0, 6, 1, 0, 1, 8, 5, 8, 8, 8, 0, 1, 3, 3, 3, 0, 0, 8, 0, 5, 9, 3, 2, 2, 6, 3, 1, 5, 3, 2, 6, 8, 0, 9, 0, 4, 7, 5, 0, 4, 9, 4, 2, 6, 6, 6, 1, 2, 1, 1, 4, 2, 4, 3, 3, 4, 9, 8, 4, 4, 3, 5, 8, 4, 7, 7, 5, 8, 5, 0, 6, 5, 5, 9, 3, 3, 7, 2, 5, 0, 9, 1, 4, 3, 2, 8, 8, 7, 7, 0, 5, 4, 3, 2, 2, 3, 1, 4, 0, 7, 7, 1, 7, 1, 7, 5, 9, 5, 3, 3, 3, 7, 7, 6
Offset: 1

Views

Author

Paul D. Hanna, Dec 03 2015

Keywords

Examples

			z = 0.39318847704964432449725821313890388585483914078866\
28695392932475757877583389749866810976662061018588\
80133300805932263153268090475049426661211424334984\
43584775850655933725091432887705432231407717175953\
33776901692614854937460993931094741172922114373160\
19617637538747813543456758934332723336245738884968...
INFINITE SERIES.
(1) z = 1/4 + 1/4^2 + 3/4^3 + 1/4^4 + 19/4^5 + 25/4^6 + 11/4^8 + 161/4^9 + 227/4^10 + 681/4^11 + 1019/4^12 +...+ A002380(n)/4^n +...
(2) 3 - z = 1/2 + 2/2^2 + 3/2^3 + 5/2^4 + 7/2^5 + 11/2^6 + 17/2^7 + 25/2^8 + 38/2^9 + 57/2^10 + 86/2^11 + 129/2^12 + 194/2^13 + 291/2^14 +...+ A002379(n)/2^n +...
where
3 - z = 2.60681152295035567550274178686109611414516...
		

Crossrefs

Cf. A002379 ([(3/2)^n]), A002380 (3^n mod 2^n), A264919, A264920, A264921, A264922.

Formula

z = Sum_{n>=1} (3^n mod 2^n) / 4^n = Sum_{n>=1} A002380(n) / 4^n.
3 - z = Sum_{n>=1} [(3/2)^n] / 2^n = Sum_{n>=1} A002379(n) / 2^n, where [x] denotes the integer floor function of x.

A264920 Decimal expansion of constant z = Sum_{n>=1} {(5/2)^n} * (2/5)^n, where {x} is the fractional part of x.

Original entry on oeis.org

2, 9, 0, 3, 6, 0, 5, 4, 1, 4, 6, 9, 8, 2, 2, 7, 7, 1, 3, 0, 8, 0, 9, 4, 6, 1, 0, 9, 2, 4, 3, 9, 5, 9, 9, 7, 0, 9, 2, 8, 3, 6, 2, 1, 8, 5, 8, 7, 0, 4, 9, 7, 8, 9, 8, 0, 2, 2, 7, 7, 7, 3, 9, 8, 2, 2, 9, 6, 0, 6, 2, 6, 0, 2, 7, 8, 4, 5, 1, 6, 3, 1, 4, 6, 4, 9, 0, 7, 9, 8, 3, 1, 1, 0, 1, 0, 9, 2, 3, 0, 0, 0, 9, 4, 1, 5, 4, 5, 3, 0, 1, 7, 1, 7, 5, 3, 6, 5, 4, 1, 1, 8, 4, 5, 4, 5, 0, 4, 1, 9, 2, 0, 2, 0, 9, 9, 3, 6, 1, 8, 4, 1, 4, 8, 2, 6, 6, 1, 9, 3, 4, 5, 5, 6, 0, 0, 6, 1, 2, 8, 3, 6
Offset: 1

Views

Author

Paul D. Hanna, Dec 03 2015

Keywords

Examples

			z = 0.29036054146982277130809461092439599709283621858704\
97898022777398229606260278451631464907983110109230\
00941545301717536541184545041920209936184148266193\
45560061283623671385240800155746118024134819360960\
04975532010154856783010592635208001206034224504288\
68709199272487962506077008849077084442477839576367\
39796048023434177527610014191473439280227784839521\
53755837195252122355246487888500246551317747557030\
20808674351984895348164983096465432641383339907483\
96807465278185792027753412945335820788419423791331...
INFINITE SERIES.
z = 1/5 + 1/5^2 + 5/5^3 + 1/5^4 + 21/5^5 + 9/5^6 + 45/5^7 + 225/5^8 + 357/5^9 + 761/5^10 + 1757/5^11 + 2641/5^12 + 5013/5^13 + 489/5^14 + 18829/5^15 + 28609/5^16 + 11973/5^17 + 59865/5^18 + 37181/5^19 + 185905/5^20 +...+ A029757(n)/5^n +...
		

Crossrefs

Cf. A029757 (5^n mod 2^n), A264918, A264919, A264921, A264922.

Formula

z = Sum_{n>=1} (5^n mod 2^n) / 5^n = Sum_{n>=1} A029757(n) / 5^n.

A264921 Decimal expansion of constant z = Sum_{n>=1} {(4/3)^n} * (3/4)^n, where {x} is the fractional part of x.

Original entry on oeis.org

1, 3, 6, 7, 4, 6, 1, 3, 7, 9, 3, 5, 3, 3, 2, 9, 2, 6, 9, 0, 2, 1, 3, 0, 0, 5, 2, 8, 2, 3, 7, 5, 4, 0, 8, 0, 4, 3, 4, 5, 9, 4, 5, 5, 1, 2, 8, 4, 8, 9, 9, 5, 3, 0, 8, 3, 7, 2, 0, 4, 7, 8, 1, 1, 2, 5, 6, 7, 4, 0, 4, 6, 8, 0, 2, 1, 0, 7, 3, 8, 6, 8, 3, 6, 3, 9, 2, 4, 7, 1, 7, 6, 6, 7, 7, 1, 9, 8, 5, 1, 0, 6, 6, 5, 7, 1, 2, 6, 3, 8, 2, 0, 9, 1, 4, 3, 0, 0, 9, 3, 2, 6, 2, 8, 0, 9, 3, 8, 9, 8, 7, 7, 0, 2, 2, 9, 6, 1, 1, 0, 1, 6, 8, 2, 1, 7, 2, 4, 9, 9, 0, 2, 2, 3, 8, 2, 5, 9, 3, 4, 1, 8, 1, 6, 5, 5, 4, 5, 9, 5, 0, 0, 8, 5, 3, 6, 4, 1, 9, 1, 0, 5, 7, 2, 4, 4, 3, 2, 9
Offset: 1

Views

Author

Paul D. Hanna, Dec 03 2015

Keywords

Examples

			z = 1.3674613793533292690213005282375408043459455128489\
95308372047811256740468021073868363924717667719851\
06657126382091430093262809389877022961101682172499\
02238259341816554595008536419105724432961711520592\
92511101423029805093364719414748469451590148076361\
52981353989027739504422481304813339179550172220838\
78986350689080620566812697277477621308107983782819\
76274774500215875970544025343446657398435575812229\
28979675592867430344641751297842513480112243120370\
37616509374801184872891959991759744341259271254468...
INFINITE SERIES.
z = 1/4 + 7/4^2 + 10/4^3 + 13/4^4 + 52/4^5 + 451/4^6 + 1075/4^7 + 6487/4^8 + 6265/4^9 + 44743/4^10 + 119923/4^11 + 302545/4^12 + 147298/4^13 + 589192/4^14 + 11922706/4^15 + 33341917/4^16 + 4227505/4^17 + 146050183/4^18 + 584200732/4^19 + 1174541461/4^20 +...+ A064629(n)/4^n +...
		

Crossrefs

Cf. A064629 (4^n mod 3^n), A264918, A264919, A264920, A264922.

Formula

z = Sum_{n>=1} (4^n mod 3^n) / 4^n = Sum_{n>=1} A064629(n) / 4^n.

A264922 Decimal expansion of constant z = Sum_{n>=1} {2^n/n} * n/2^n, where {x} is the fractional part of x.

Original entry on oeis.org

4, 1, 2, 9, 2, 0, 7, 6, 8, 6, 7, 1, 4, 9, 7, 6, 9, 2, 3, 1, 8, 7, 6, 4, 4, 6, 3, 3, 9, 1, 6, 6, 0, 2, 2, 3, 2, 6, 6, 3, 6, 5, 8, 0, 8, 5, 5, 9, 1, 6, 1, 5, 0, 1, 7, 1, 2, 0, 8, 7, 3, 8, 0, 9, 6, 5, 2, 9, 3, 3, 4, 5, 5, 2, 2, 8, 4, 2, 3, 7, 1, 0, 8, 3, 2, 2, 4, 0, 6, 8, 1, 1, 8, 9, 3, 7, 5, 4, 2, 6, 7, 0, 9, 4, 4, 0, 9, 6, 8, 1, 5, 9, 1, 8, 6, 8, 4, 5, 2, 3, 9, 0, 6, 7, 6, 7, 3, 7, 4, 3, 9, 4, 7, 7, 8, 7, 6, 7, 4, 4, 6, 5, 5, 6, 7, 1, 1, 4, 7, 6, 1, 0, 7, 8, 0, 4, 6, 5, 5, 3, 2, 9
Offset: 0

Views

Author

Paul D. Hanna, Dec 03 2015

Keywords

Examples

			z = 0.41292076867149769231876446339166022326636580855916\
15017120873809652933455228423710832240681189375426\
70944096815918684523906767374394778767446556711476\
10780465532930416417809262367754600548943347721936\
55335089998952017672435611201014919700656911176350\
62372182725523627777491225313970963752168821911399\
67310841379582079241875027376200157722800032983503\
52300500273468914504274753388182612540758874330051\
88409791519634550380640194311077029592977832839103\
92762052659306868595889500273010680885518723259637...
INFINITE SERIES.
z = 0/2 + 0/2^2 + 2/2^3 + 0/2^4 + 2/2^5 + 4/2^6 + 2/2^7 + 0/2^8 + 8/2^9 + 4/2^10 + 2/2^11 + 4/2^12 + 2/2^13 + 4/2^14 + 8/2^15 + 0/2^16 + 2/2^17 + 10/2^18 + 2/2^19 + 16/2^20 + 8/2^21 + 4/2^22 + 2/2^23 + 16/2^24 + 7/2^25 + 4/2^26 + 26/2^27 + 16/2^28 + 2/2^29 + 4/2^30 + 2/2^31 + 0/2^32 + 8/2^33 +...+ A015910(n)/2^n +...
		

Crossrefs

Cf. A015910 (2^n mod n), A264918, A264919, A264920, A264921.

Formula

z = Sum_{n>=1} (2^n mod n) / 2^n = Sum_{n>=1} A015910(n) / 2^n.
Showing 1-4 of 4 results.