A264923
G.f.: 1 / Product_{n>=0} (1 - x^(n+3))^((n+1)*(n+2)/2!).
Original entry on oeis.org
1, 0, 0, 1, 3, 6, 11, 18, 33, 57, 105, 183, 330, 567, 990, 1693, 2904, 4917, 8343, 14010, 23511, 39171, 65100, 107592, 177352, 290931, 475905, 775381, 1259637, 2039094, 3291613, 5296467, 8499339, 13599292, 21702795, 34541724, 54839894, 86847255, 137212197, 216274466, 340129773, 533726442, 835732774, 1305877914, 2036369010
Offset: 0
G.f.: A(x) = 1 + x^3 + 3*x^4 + 6*x^5 + 11*x^6 + 18*x^7 + 33*x^8 + 57*x^9 + 105*x^10 +...
where
1/A(x) = (1-x^3) * (1-x^4)^3 * (1-x^5)^6 * (1-x^6)^10 * (1-x^7)^15 * (1-x^8)^21 * (1-x^9)^28 * (1-x^10)^36 * (1-x^11)^45 *...
Also,
log(A(x)) = (x/(1-x))^3 + (x^2/(1-x^2))^3/2 + (x^3/(1-x^3))^3/3 + (x^4/(1-x^4))^3/4 + (x^5/(1-x^5))^3/5 + (x^6/(1-x^6))^3/6 +...
-
nmax = 50; CoefficientList[Series[Product[1/(1-x^k)^((k-2)*(k-1)/2), {k,1,nmax}], {x,0,nmax}], x] (* Vaclav Kotesovec, Dec 09 2015 *)
-
{a(n) = my(A=1); A = prod(k=0,n, 1/(1 - x^(k+3) +x*O(x^n) )^((k+1)*(k+2)/2) ); polcoeff(A,n)}
for(n=0,50,print1(a(n),", "))
-
{a(n) = my(A=1); A = exp( sum(k=1,n+1, (x^k/(1 - x^k))^3 /k +x*O(x^n) ) ); polcoeff(A,n)}
for(n=0,50,print1(a(n),", "))
-
{L(n) = sumdiv(n,d, d*(d-1)*(d-2)/2! )}
{a(n) = my(A=1); A = exp( sum(k=1,n+1, L(k) * x^k/k +x*O(x^n) ) ); polcoeff(A,n)}
for(n=0,50,print1(a(n),", "))
A264924
G.f.: 1 / Product_{n>=0} (1 - x^(n+4))^((n+1)*(n+2)*(n+3)/3!).
Original entry on oeis.org
1, 0, 0, 0, 1, 4, 10, 20, 36, 60, 104, 180, 336, 620, 1174, 2160, 3961, 7100, 12690, 22424, 39651, 69820, 122970, 215904, 378470, 660872, 1150740, 1996200, 3452685, 5952916, 10237576, 17559460, 30049285, 51301020, 87390872, 148534232, 251916041, 426329040, 720003646, 1213481344, 2041155052, 3426721080
Offset: 0
G.f.: A(x) = 1 + x^4 + 4*x^5 + 10*x^6 + 20*x^7 + 36*x^8 + 60*x^9 + 104*x^10 + 180*x^11 +...
where
1/A(x) = (1-x^4) * (1-x^5)^4 * (1-x^6)^10 * (1-x^7)^20 * (1-x^8)^35 * (1-x^9)^56 * (1-x^10)^84 * (1-x^11)^120 * (1-x^12)^165 *...
Also,
log(A(x)) = (x/(1-x))^4 + (x^2/(1-x^2))^4/2 + (x^3/(1-x^3))^4/3 + (x^4/(1-x^4))^4/4 + (x^5/(1-x^5))^4/5 + (x^6/(1-x^6))^4/6 +...
-
nmax = 50; CoefficientList[Series[Product[1/(1-x^k)^((k-3)*(k-2)*(k-1)/6), {k,1,nmax}], {x,0,nmax}], x] (* Vaclav Kotesovec, Dec 09 2015 *)
-
{a(n) = my(A=1); A = prod(k=0,n, 1/(1 - x^(k+4) +x*O(x^n) )^((k+1)*(k+2)*(k+3)/3!) ); polcoeff(A,n)}
for(n=0,50,print1(a(n),", "))
-
{a(n) = my(A=1); A = exp( sum(k=1,n+1, (x^k/(1 - x^k))^4 /k +x*O(x^n) ) ); polcoeff(A,n)}
for(n=0,50,print1(a(n),", "))
-
{L(n) = sumdiv(n,d, d*(d-1)*(d-2)*(d-3)/3! )}
{a(n) = my(A=1); A = exp( sum(k=1,n+1, L(k) * x^k/k +x*O(x^n) ) ); polcoeff(A,n)}
for(n=0,50,print1(a(n),", "))
A264926
G.f.: 1 / Product_{n>=0} (1 - x^(n+6))^((n+1)*(n+2)*(n+3)*(n+4)*(n+5)/5!).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 1, 6, 21, 56, 126, 252, 463, 798, 1329, 2184, 3696, 6552, 12405, 24486, 49524, 99722, 197967, 383796, 727609, 1350174, 2466534, 4457844, 8022819, 14448168, 26142810, 47603010, 87222576, 160522228, 295996791, 545445468, 1002392105, 1834644210, 3342375099, 6061611192, 10949981496, 19720143366, 35440268956
Offset: 0
G.f.: A(x) = 1 + x^6 + 6*x^7 + 21*x^8 + 56*x^9 + 126*x^10 + 252*x^11 + 463*x^12 +...
where
1/A(x) = (1-x^6) * (1-x^7)^6 * (1-x^8)^21 * (1-x^9)^56 * (1-x^10)^126 * (1-x^11)^252 * (1-x^12)^462 * (1-x^13)^792 * (1-x^14)^1287 * (1-x^15)^2002 *...
Also,
log(A(x)) = (x/(1-x))^6 + (x^2/(1-x^2))^6/2 + (x^3/(1-x^3))^6/3 + (x^4/(1-x^4))^6/4 + (x^5/(1-x^5))^6/5 + (x^6/(1-x^6))^6/6 +...
-
nmax = 50; CoefficientList[Series[Product[1/(1-x^k)^((k-5)*(k-4)*(k-3)*(k-2)*(k-1)/120), {k,1,nmax}], {x,0,nmax}], x] (* Vaclav Kotesovec, Dec 09 2015 *)
-
{a(n) = my(A=1); A = prod(k=0,n, 1/(1 - x^(k+6) +x*O(x^n) )^((k+1)*(k+2)*(k+3)*(k+4)*(k+5)/5!) ); polcoeff(A,n)}
for(n=0,50,print1(a(n),", "))
-
{a(n) = my(A=1); A = exp( sum(k=1,n+1, (x^k/(1 - x^k))^6 /k +x*O(x^n) ) ); polcoeff(A,n)}
for(n=0,50,print1(a(n),", "))
-
{L(n) = sumdiv(n,d, d*(d-1)*(d-2)*(d-3)*(d-4)*(d-5)/5! )}
{a(n) = my(A=1); A = exp( sum(k=1,n+1, L(k) * x^k/k +x*O(x^n) ) ); polcoeff(A,n)}
for(n=0,50,print1(a(n),", "))
Showing 1-3 of 3 results.
Comments