A264935 Numbers k such that the average of the digits of the k-th Fibonacci number is greater than 5.
6, 11, 14, 16, 17, 20, 23, 24, 34, 38, 39, 42, 48, 49, 58, 66, 74, 77, 83, 87, 102, 104, 110, 120, 136, 145, 156, 158, 172, 177, 178, 183, 195, 201, 233, 235, 250, 256, 260, 273, 277, 282, 288, 293, 306, 319, 325, 329, 373, 389, 399, 415, 458, 512, 589, 609, 695, 862, 989, 1063
Offset: 1
Examples
The first several terms and their corresponding Fibonacci numbers, number of digits D, digit sum S, and average digit values are as follows: . k | Fibonacci(k) | D | S | avg. digit value ---+--------------+----+----+----------------- 6 | 8 | 1 | 8 | 8.00000000000000 11 | 89 | 2 | 17 | 8.50000000000000 14 | 377 | 3 | 17 | 5.66666666666667 16 | 987 | 3 | 24 | 8.00000000000000 17 | 1597 | 4 | 22 | 5.50000000000000 20 | 6765 | 4 | 24 | 6.00000000000000 23 | 28657 | 5 | 28 | 5.60000000000000 24 | 46368 | 5 | 27 | 5.40000000000000 34 | 5702887 | 7 | 37 | 5.28571428571429 38 | 39088169 | 8 | 44 | 5.50000000000000 39 | 63245986 | 8 | 43 | 5.37500000000000 42 | 267914296 | 9 | 46 | 5.11111111111111 48 | 4807526976 | 10 | 54 | 5.40000000000000 49 | 7778742049 | 10 | 55 | 5.50000000000000 58 | 591286729879 | 12 | 73 | 6.08333333333333 . (Fibonacci(58) is almost certainly the last Fibonacci number whose average digit exceeds 98/17 = 5.764705...)
Crossrefs
Cf. A000045.
Programs
-
Mathematica
Select[Range@ 1200, Mean@ IntegerDigits@ Fibonacci@ # > 5 &] (* Michael De Vlieger, Nov 28 2015 *)
Comments