cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264970 If A262686(n) = 0, a(n) = 0, otherwise a(n) = 1 + a(A262686(n)), where A262686(n) = largest number k such that k - d(k) = n, or 0 if no such number exists, and d(n) = the number of divisors of n (A000005).

Original entry on oeis.org

12, 2, 11, 2, 1, 1, 10, 0, 0, 3, 2, 2, 9, 0, 1, 5, 1, 4, 8, 0, 0, 3, 7, 2, 0, 0, 2, 1, 0, 1, 6, 6, 1, 0, 5, 5, 0, 0, 6, 4, 0, 1, 4, 0, 1, 3, 3, 2, 5, 0, 0, 1, 0, 2, 2, 0, 0, 1, 1, 4, 4, 3, 3, 0, 0, 2, 0, 0, 0, 1, 2, 3, 3, 2, 0, 0, 2, 1, 4, 0, 1, 1, 3, 3, 2, 0, 2, 2, 0, 4, 3, 1, 1, 3, 2, 5, 1, 4, 0, 2, 0
Offset: 0

Views

Author

Antti Karttunen, Nov 29 2015

Keywords

Comments

a(n) = number of iterations of A262686 needed before zero is reached. In the context of tree (A263267) defined by edge-relation A049820(child) = parent, this is the number of hops we make before reaching one of the leaves (A045765), when we start from n and always select the largest child at each iteration.

Crossrefs

Cf. A045765 (positions of zeros).
One less than A264971.

Formula

If A060990(n) = 0, a(n) = 0, otherwise a(n) = 1 + a(A262686(n)).
Other identities. For all n >= 0:
a(n) = A264971(n) - 1.