A264983 Odd bisection of A263273.
1, 3, 7, 5, 9, 19, 13, 21, 25, 11, 15, 23, 17, 27, 55, 37, 57, 73, 31, 39, 67, 49, 63, 61, 43, 75, 79, 29, 33, 65, 47, 45, 59, 41, 69, 77, 35, 51, 71, 53, 81, 163, 109, 165, 217, 91, 111, 199, 145, 171, 181, 127, 219, 235, 85, 93, 193, 139, 117, 175, 121, 201, 229, 103, 147, 211
Offset: 0
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
f[n_] := Block[{g, h}, g[x_] := x/3^IntegerExponent[x, 3]; h[x_] := x/g@ x; If[n == 0, 0, FromDigits[Reverse@ IntegerDigits[#, 3], 3] &@ g[n] h[n]]]; t = Select[f /@ Range@ 130, OddQ] (* Michael De Vlieger, Jan 04 2016, after Jean-François Alcover at A263273 *)
-
Python
from sympy import factorint from sympy.ntheory.factor_ import digits from operator import mul def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3) def a038502(n): f=factorint(n) return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f]) def a038500(n): return n/a038502(n) def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n) def a(n): return a263273(2*n + 1) # Indranil Ghosh, May 22 2017
-
Scheme
(define (A264983 n) (A263273 (+ 1 n n)))
Formula
a(n) = A263273(2n + 1).