cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264997 Number of partitions of n into distinct parts of the form 3^a*5^b.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 0, 1, 2, 2, 1, 2, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 1, 2, 3, 2, 3, 3, 2, 4, 3, 1, 3, 3, 3, 3, 3, 3, 4, 4, 2, 4, 3, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 3, 4, 2, 5, 5, 3, 4, 4, 4, 5, 4, 2, 6, 6, 3, 5
Offset: 0

Views

Author

Joseph Myers, Nov 29 2015

Keywords

Examples

			28 = 27 + 1 = 25 + 3 = 15 + 9 + 3 + 1, so a(28) = 3.
		

Crossrefs

Programs

  • Haskell
    import Data.MemoCombinators (memo2, list, integral)
    a264997 n = a264997_list !! (n-1)
    a264997_list = f 0 [] a003593_list where
       f u vs ws'@(w:ws) | u < w = (p' vs u) : f (u + 1) vs ws'
                         | otherwise = f u (vs ++ [w]) ws
       p' = memo2 (list integral) integral p
       p _  0 = 1
       p [] _ = 0
       p (k:ks) m = if m < k then 0 else p' ks (m - k) + p' ks m
    -- Reinhard Zumkeller, Dec 18 2015
  • Mathematica
    nmax = 100; A003593 = Select[Range[nmax], PowerMod[15, #, #] == 0 &]; CoefficientList[Series[Product[(1 + x^(A003593[[k]])), {k, 1, Length[A003593]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 01 2015 *)

Formula

G.f.: (1+x)(1+x^3)(1+x^5)(1+x^9)(1+x^15)....