cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265007 Total sum of number of lambda-parking functions, where lambda ranges over all partitions of n.

Original entry on oeis.org

1, 1, 3, 7, 18, 40, 97, 216, 499, 1112, 2502, 5503, 12197, 26582, 58088, 125619, 271713, 583228, 1251115, 2668651, 5685053, 12059993, 25544291, 53926003, 113666195, 238946232, 501546514, 1050430420, 2196869731, 4586021745, 9560876381, 19900839742, 41373446190
Offset: 0

Views

Author

Alois P. Heinz, Nov 29 2015

Keywords

Examples

			The number of lambda-parking functions induced by the partitions of 4:
1 by [1,1,1,1]: [1,1,1,1],
4 by [1,1,2]: [1,1,1], [1,1,2], [1,2,1], [2,1,1],
4 by [2,2]: [1,1], [1,2], [2,1], [2,2],
5 by [1,3]: [1,1], [1,2], [2,1], [1,3], [3,1],
4 by [4]: [1], [2], [3], [4].
a(4) = 1 + 4 + 4 + 5 + 4 = 18.
		

Crossrefs

Programs

  • Maple
    p:= l-> (n-> n!*LinearAlgebra[Determinant](Matrix(n, (i, j)
             -> (t->`if`(t<0, 0, l[i]^t/t!))(j-i+1))))(nops(l)):
    g:= (n, i, l)-> `if`(n=0 or i=1, p([1$n, l[]]), g(n, i-1, l)
                   +`if`(i>n, 0, g(n-i, i, [i, l[]]))):
    a:= n-> g(n$2, []):
    seq(a(n), n=0..20);
  • Mathematica
    p[l_] := With[{n = Length[l]}, n! Det[Table[With[{t = j - i + 1},
         If[t < 0, 0, l[[i]]^t/t!]], {i, n}, {j, n}]]];
    g[n_, i_, l_] := If[n == 0 || i == 1, p[Join[
         Table[1, {n}], l]], g[n, i - 1, l] +
         If[i > n, 0, g[n - i, i, Prepend[l, i]]]];
    a[n_] := If[n == 0, 1, g[n, n, {}]];
    Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Aug 22 2021, after Alois P. Heinz *)