A265007 Total sum of number of lambda-parking functions, where lambda ranges over all partitions of n.
1, 1, 3, 7, 18, 40, 97, 216, 499, 1112, 2502, 5503, 12197, 26582, 58088, 125619, 271713, 583228, 1251115, 2668651, 5685053, 12059993, 25544291, 53926003, 113666195, 238946232, 501546514, 1050430420, 2196869731, 4586021745, 9560876381, 19900839742, 41373446190
Offset: 0
Keywords
Examples
The number of lambda-parking functions induced by the partitions of 4: 1 by [1,1,1,1]: [1,1,1,1], 4 by [1,1,2]: [1,1,1], [1,1,2], [1,2,1], [2,1,1], 4 by [2,2]: [1,1], [1,2], [2,1], [2,2], 5 by [1,3]: [1,1], [1,2], [2,1], [1,3], [3,1], 4 by [4]: [1], [2], [3], [4]. a(4) = 1 + 4 + 4 + 5 + 4 = 18.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..50
- R. Stanley, Parking Functions, 2011
Programs
-
Maple
p:= l-> (n-> n!*LinearAlgebra[Determinant](Matrix(n, (i, j) -> (t->`if`(t<0, 0, l[i]^t/t!))(j-i+1))))(nops(l)): g:= (n, i, l)-> `if`(n=0 or i=1, p([1$n, l[]]), g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [i, l[]]))): a:= n-> g(n$2, []): seq(a(n), n=0..20);
-
Mathematica
p[l_] := With[{n = Length[l]}, n! Det[Table[With[{t = j - i + 1}, If[t < 0, 0, l[[i]]^t/t!]], {i, n}, {j, n}]]]; g[n_, i_, l_] := If[n == 0 || i == 1, p[Join[ Table[1, {n}], l]], g[n, i - 1, l] + If[i > n, 0, g[n - i, i, Prepend[l, i]]]]; a[n_] := If[n == 0, 1, g[n, n, {}]]; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Aug 22 2021, after Alois P. Heinz *)